Advertisement

Journal of Zhejiang University-SCIENCE B

, Volume 19, Issue 7, pp 570–580 | Cite as

Nucleocapsid protein from porcine epidemic diarrhea virus isolates can antagonize interferon-λ production by blocking the nuclear factor-κB nuclear translocation

  • Ying Shan
  • Zi-qi Liu
  • Guo-wei Li
  • Cong Chen
  • Hao Luo
  • Ya-jie Liu
  • Xun-hui Zhuo
  • Xing-fen Shi
  • Wei-huan Fang
  • Xiao-liang Li
Article
  • 14 Downloads

Abstract

Porcine epidemic diarrhea virus (PEDV) is a highly infectious pathogen that can cause severe diseases in pigs and result in enormous economic losses in the worldwide swine industry. Previous studies revealed that PEDV exhibits an obvious capacity for modulating interferon (IFN) signaling or expression. The newly discovered type III IFN, which plays a crucial role in antiviral immunity, has strong antiviral activity against PEDV proliferation in IPEC-J2 cells. In this study, we aimed to investigate the effect of PEDV nucleocapsid (N) protein on type III IFN-λ. We found that the N proteins of ten PEDV strains isolated between 2013 and 2017 from different local farms shared high nucleotide identities, while the N protein of the CV777 vaccine strain formed a monophyletic branch in the phylogenetic tree. The N protein of the epidemic strain could antagonize type III IFN, but not type I or type II IFN expression induced by polyinosinic-polycytidylic acid (poly(I:C)) in IPEC-J2 cells. Subsequently, we demonstrated that the inhibition of poly(I:C)- induced IFN-λ3 production by PEDV N protein was dependent on the blocking of nuclear factor-κB (NF-κB) nuclear translocation. These findings might help increase understanding of the pathogenesis of PEDV and its mechanisms for evading the host immune response.

Key words

Porcine epidemic diarrhea virus Nucleocapsid protein Interferon-λ (IFN-λ) Nuclear factor-κB (NF-κB) Intestinal epithelial cells 

猪流性腹泻病毒流行毒株核衣壳蛋白能够通过阻断核因子κB 入核拮抗λ 干扰素产生

中文概要

目的

探索猪流性腹泻病毒(PEDV)核衣壳蛋白(N 蛋白)对III 型λ 干扰素(IFN-λ)的影响。

创新点

首次在IPEC-J2 细胞模型中证明PEDV 流行病毒 株的N 蛋白可拮抗由聚肌胞苷酸(poly(I:C))诱 导表达的III 型IFN,但不能拮抗I 型或II 型IFN。 这种拮抗作用是通过阻断核因子κB(NF-κB)入 核来实现的。

方法

利用poly(I:C)刺激IPEC-J2 细胞使其IFN 诱导表 达。实验组转染N 蛋白真核表达载体,对照组转 染空载体;利用定量聚合酶链反应(qPCR)、荧 光素酶报告基因等技术,检测N 蛋白对I 型、II 型及III 型IFN 表达抑制情况。利用间接免疫荧 光技术,检测NF-κB 在细胞内的分布情况,分析 NF-κB 入核与N 蛋白抑制IFN-λ 表达的关系。

结论

2013 年至2017 年间从浙江省不同的农场分离的 10个PEDV毒株的N蛋白具有较高的核苷酸同源 性,而疫苗毒株CV777 的N 蛋白在系统发育树 中形成单系分支(图1)。流行病毒株的N 蛋白 可以在IPEC-J2 细胞中成功表达(图2 和3), 并拮抗由poly(I:C)诱导表达的III 型IFN,但不能 拮抗I 型或II 型IFN(图4 和5)。PEDV N 蛋白 通过阻断NF-ΚB 入核来对poly(I:C) 诱导的 IFN-λ3 产生的抑制作用(图6)。

关键词

猪流行性腹泻 核衣壳蛋白 λ 干扰素 核因子κB 肠上皮细胞 

CLC number

S855.3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ank N, West H, Bartholdy C, et al., 2006. Lambda interferon (IFN-λ), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. J Virol, 80(9):4501–4509. https://doi.org/10.1128/JVI.80.9.4501-4509.2006CrossRefPubMedPubMedCentralGoogle Scholar
  2. Cao L, Ge X, Gao Y, et al., 2015. Porcine epidemic diarrhea virus inhibits dsRNA-induced interferon-β production in porcine intestinal epithelial cells by blockade of the RIG-I-mediated pathway. VirolJ, 12(1):127. https://doi.org/10.1186/s12985-015-0345-xCrossRefGoogle Scholar
  3. Cao L, Ge X, Gao Y, et al., 2015. Porcine epidemic diarrhea virus infection induces NF-κB activation through the TLR2, TLR3 and TLR9 pathways in porcine intestinal epithelial cells. J Gen Virol, 96(7):1757–1767. https://doi.org/10.1099/vir.0.000133CrossRefPubMedGoogle Scholar
  4. Charley B, Laude H, 1988. Induction of α interferon by transmissible gastroenteritis coronavirus: role of transmembrane glycoprotein E1. J Virol, 62(1):8–11.PubMedPubMedCentralGoogle Scholar
  5. Ding Q, Huang B, Lu J, et al., 2012. Hepatitis c virus NS3/4A protease blocks IL-28 production. Eur J Immunol, 42(9): 2374–2382. https://doi.org/10.1002/eji.201242388CrossRefPubMedGoogle Scholar
  6. Ding Z, Fang L, Jing H, et al., 2014. Porcine epidemic diarrhea virus nucleocapsid protein antagonizes β interferon production by sequestering the interaction between IRF3 and TBK1. J Virol, 88(16):8936. https://doi.org/10.1128/JVI.00700-14CrossRefPubMedPubMedCentralGoogle Scholar
  7. Guo C, Liu Y, Huang Y, 2016. Inhibitory mechanism of host antiviral innate immunity by porcine epidemic diarrhea virus. Chin J Biochem Mol Biol, 32(9):967–975 (in Chinese). https://doi.org/10.13865/j.cnki.cjbmb.2016.09.01Google Scholar
  8. Iversen MB, Ank N, Melchjorsen J, et al., 2010. Expression of type III interferon (IFN) in the vaginal mucosa is mediated primarily by dendritic cells and displays stronger dependence on NF-κB than type I IFNs. J Virol, 84(9): 4579–4586. https://doi.org/10.1128/JVI.02591-09CrossRefPubMedPubMedCentralGoogle Scholar
  9. Jung K, Saif LJ, 2015. Porcine epidemic diarrhea virus infection: etiology, epidemiology, pathogenesis and immunoprophylaxis. Veterinary J, 204(2):134–143. https://doi.org/10.1016/j.tvjl.2015.02.017CrossRefGoogle Scholar
  10. Laude H, Masters PS, 1995. The coronavirus nucleocapsid protein. In: Siddell SG (Ed.), The Coronaviridae. The Viruses. Springer, Boston, p.141–163. https://doi.org/10.1007/978-1-4899-1531-3_7Google Scholar
  11. Lazear HM, Nice TJ, Diamond MS, 2015. Interferon-λ: immune functions at barrier surfaces and beyond. Immunity, 43(1):15–28. https://doi.org/10.1016/j.immuni.2015.07.001CrossRefPubMedPubMedCentralGoogle Scholar
  12. Lee C, 2015. Porcine epidemic diarrhea virus: an emerging and re-emerging epizootic swine virus. Virol J, 12(1):193. https://doi.org/10.1186/s12985-015-0421-2CrossRefPubMedPubMedCentralGoogle Scholar
  13. Li J, Liu Y, Zhang X, 2010. Murine coronavirus induces type I interferon in oligodendrocytes through recognition by RIG-I and MAD5. J Virol, 84(13):6472–6482. https://doi.org/10.1128/JVI.00016-10CrossRefPubMedPubMedCentralGoogle Scholar
  14. Li L, Fu F, Xue M, et al., 2017. IFN-lambda preferably inhibits PEDV infection of porcine intestinal epithelial cells compared with IFN-α. Antiviral Res, 140:76–82. https://doi.org/10.1016/j.antiviral.2017.01.012CrossRefPubMedGoogle Scholar
  15. Lu X, Pan JA, Tao J, et al., 2011. SARS-CoV nucleocapsid protein antagonizes IFN-β response by targeting initial step of IFN-β induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes, 42(1): 37–45. https://doi.org/10.1007/s11262-010-0544-xCrossRefPubMedGoogle Scholar
  16. Odendall C, Dixit E, Stavru F, et al., 2014. Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nat Immunol, 15(8):717–726. https://doi.org/10.1038/ni.2915CrossRefPubMedPubMedCentralGoogle Scholar
  17. Odendall C, Kagan JC, 2015. The unique regulation and functions of type III interferons in antiviral immunity. Curr Opin Virol, 12:47–52. https://doi.org/10.1016/j.coviro.2015.02.003CrossRefPubMedPubMedCentralGoogle Scholar
  18. Osterlund P, Veckman V, Sirén J, et al., 2005. Gene expression and antiviral activity of α/β interferons and interleukin-29 in virus-infected human myeloid dendritic cells. J Virol, 79(15):9608–9617. https://doi.org/10.1128/JVI.79.15.9608-9617.2005CrossRefPubMedPubMedCentralGoogle Scholar
  19. Roth-Cross JK, Bender SJ, Weiss SR, 2008. Murine coronavirus mouse hepatitis virus is recognized by MAD5 and induces type I interferon in brain macrophages/microglia. J Virol, 82(20):9829–9838. https://doi.org/10.1128/JVI.01199-08CrossRefPubMedPubMedCentralGoogle Scholar
  20. Saif LJ, 1993. Coronavirus immunogens. Vet Microbial, 37(3-4): 285–297. https://doi.org/10.1016/0378-1135(93)90030-BCrossRefGoogle Scholar
  21. Sang Y, Rowland RR, Blecha F, 2010. Molecular characterization and antiviral analyses of porcine type III interferons. J Interf Cytok Res, 30(11):801–807. https://doi.org/10.1089/jir.2010.0016CrossRefGoogle Scholar
  22. Schelle B, Karl N, Ludewig B, et al., 2005. Selective replication of coronavirus genomes that express nucleocapsid protein. J Virol, 79(11):6620–6630. https://doi.org/10.1128/JVI.79.11.6620-6630.2005CrossRefPubMedPubMedCentralGoogle Scholar
  23. Seth RB, Sun L, Ea CK, et al., 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell, 122(5): 669–682. https://doi.org/10.1016/j.cell.2005.08.012CrossRefPubMedGoogle Scholar
  24. Shen H, Zhang C, Guo P, et al., 2016. Short communication: antiviral activity of porcine IFN-λ3 against porcine epidemic diarrhea virus in vitro. Virus Genes, 52(6):877–882. https://doi.org/10.1007/s11262-016-1374-2CrossRefPubMedGoogle Scholar
  25. Sommereyns C, Paul S, Staeheli P, et al., 2008. IFN-lambda (IFN-λ) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog, 4(3):e1000017. https://doi.org/10.1371/journal.ppat.1000017CrossRefPubMedPubMedCentralGoogle Scholar
  26. Song D, Park B, 2012. Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines. Virus Genes, 44(2):167–175. https://doi.org/10.1007/s11262-012-0713-1CrossRefPubMedGoogle Scholar
  27. Spiegel M, Pichlmair A, Mühlberger E, et al., 2004. The antiviral effect of interferon-β against SARS-coronavirus is not mediated by MXA protein. J Clin Virol, 30(3):211–213. https://doi.org/10.1016/j.jcv.2003.11.013CrossRefPubMedGoogle Scholar
  28. Stetson DB, Medzhitov R, 2006. Type I interferons in host defense. Immunity, 25(3):373–381. https://doi.org/10.1016/j.immuni.2006.08.007CrossRefPubMedGoogle Scholar
  29. Thomson SJ, Goh FG, Banks H, et al., 2009. The role of transposable elements in the regulation of IFN-λ1 gene expression. Proc Natl Acad Sci USA, 106(28):11564–11569. https://doi.org/10.1073/pnas.0904477106CrossRefPubMedGoogle Scholar
  30. Wack A, Terczyńska-Dyla E, Hartmann R, 2015. Guarding the frontiers: the biology of type III interferons. Nat Immunol, 16(8):802–809. https://doi.org/10.1038/ni.3212CrossRefPubMedGoogle Scholar
  31. Wen G, Zhang Y, Zhang X, et al., 2013. Functional characterization of porcine LSm14a in IFN-β induction. Vet Immunol Immunop, 155(1-2):110–116. https://doi.org/10.1016/j.vetimm.2013.06.019CrossRefGoogle Scholar
  32. Ye Y, Hauns K, Langland JO, et al., 2007. Mouse hepatitis coronavirus A59 nucleocapsid protein is a type I interferon antagonist. J Virology, 81(6):2554–2563. https://doi.org/10.1128/JVI.01634-06CrossRefPubMedGoogle Scholar
  33. Zhang Q, Shi K, Yoo D, 2016. Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1. Virology, 489:252–268. https://doi.org/10.1016/j.virol.2015.12.010CrossRefPubMedGoogle Scholar
  34. Zhou Y, Gu Y, Qi B, et al., 2017. Porcine circovirus type 2 capsid protein induces unfolded protein response with subsequent activation of apoptosis. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 18(4):316–323. https://doi.org/10.1631/jzus.B1600208CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Zhejiang Province Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterainary Medicine, College of Animal SciencesZhejiang UniversityHangzhouChina
  2. 2.Institute of Parasitic DiseaseZhejiang Academy of Medical SciencesHangzhouChina
  3. 3.Animal Products Quality Testing Center of Zhejiang ProvinceHangzhouChina

Personalised recommendations