Advertisement

Journal of Zhejiang University-SCIENCE B

, Volume 19, Issue 7, pp 515–524 | Cite as

Mandatory criteria for the application of variability-based parameters of fluid responsiveness: a prospective study in different groups of ICU patients

  • Wolfgang Huber
  • Uli Mayr
  • Andreas Umgelter
  • Michael Franzen
  • Wolfgang Reindl
  • Roland M. Schmid
  • Florian Eckel
Article
  • 6 Downloads

Abstract

Background and objective

Stroke volume variation (SVV) has high sensitivity and specificity in predicting fluid responsiveness. However, sinus rhythm (SR) and controlled mechanical ventilation (CV) are mandatory for their application. Several studies suggest a limited applicability of SVV in intensive care unit (ICU) patients. We hypothesized that the applicability of SVV might be different over time and within certain subgroups of ICU patients. Therefore, we analysed the prevalence of SR and CV in ICU patients during the first 24 h of PiCCO-monitoring (primary endpoint) and during the total ICU stay. We also investigated the applicability of SVV in the subgroups of patients with sepsis, cirrhosis, and acute pancreatitis.

Methods

The prevalence of SR and CV was documented immediately before 1241 thermodilution measurements in 88 patients. Results: In all measurements, SVV was applicable in about 24%. However, the applicability of SVV was time-dependent: the prevalence of both SR and CV was higher during the first 24 h compared to measurements thereafter (36.1% vs. 21.9%; P<0.001). Within different subgroups, the applicability during the first 24 h of monitoring ranged between 0% in acute pancreatitis, 25.5% in liver failure, and 48.9% in patients without pancreatitis, liver failure, pneumonia or sepsis.

Conclusions

The applicability of SVV in a predominantly medical ICU is only about 25%–35%. The prevalence of both mandatory criteria decreases over time during the ICU stay. Furthermore, the applicability is particularly low in patients with acute pancreatitis and liver failure.

Key words

Hemodynamic monitoring Preload Fluid responsiveness Stroke volume variation Pulse pressure variation 

不同患者群体容量反应性变量参数应用的强制性标准:重症监护病人窦性节律和控制呼吸流行情况的前瞻性研究

中文概要

目的

通过对危重病人在入院后24 小时内和整个重症 监护过程中窦性心律和控制呼吸情况的调查,分 析每搏量变异在评估危重病人容量反应的适用 性,并探究每搏量变异度在败血症、肝硬化和胰 腺炎病人中的适用性。

创新点

通过探究窦性节律和控制呼吸情况评估每搏量变 异度在重症监护病人临床上的适用性,弥补重症 监护病人窦性节律和控制呼吸情况数据的空白。

方法

在进行1241 次热稀释法血流量测量前,对88 位 病人的窦性节律和控制呼吸情况进行调查。

结论

每搏量变异度在主要的医疗重症监护病房中的适 用性只约为25%~35%。两项强制性指标的流行 性在重症监护病房的情况随时间的延长而降低。 此外,每搏量变异度在胰腺炎和肝功能衰竭患者 中的适用性尤其低。

关键词

前负荷 容量反应性 每搏量变异度 脉压变异 

CLC number

R44 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Chalabi A, Matevossian E, v Thaden AK, et al., 2013. Evaluation of the Hepa Wash® treatment in pigs with acute liver failure. BMC Gastroenterol, 13:83. https://doi.org/10.1186/1471-230X-13-83CrossRefPubMedPubMedCentralGoogle Scholar
  2. Benes J, Giglio M, Brienza N, et al., 2014a. The effects of goal-directed fluid therapy based on dynamic parameters on post-surgical outcome: a meta-analysis of randomized controlled trials. Crit Care, 18(5):584. https://doi.org/10.1186/s13054-014-0584-zCrossRefPubMedPubMedCentralGoogle Scholar
  3. Benes J, Zatloukal J, Kletecka J, et al., 2014b. Respiratory induced dynamic variations of stroke volume and its surrogates as predictors of fluid responsiveness: applicability in the early stages of specific critical states. J Clin Monit Comput, 28(3):225–231. https://doi.org/10.1007/s10877-013-9524-8CrossRefPubMedGoogle Scholar
  4. Biais M, Ehrmann S, Mari A, et al., 2014. Clinical relevance of pulse pressure variations for predicting fluid responsiveness in mechanically ventilated intensive care unit patients: the grey zone approach. Crit Care, 18(6):587. https://doi.org/10.1186/s13054-014-0587-9CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cannesson M, Vallet B, Michard F, 2009. Pulse pressure variation and stroke volume variation: from flying blind to flying right? Br J Anaesth, 103(6):896–899. https://doi.org/10.1093/bja/aep321CrossRefPubMedGoogle Scholar
  6. Cannesson M, le Manach Y, Hofer CK, et al., 2011. Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: a “gray zone” approach. Anesthesiology, 115(2):231–241. https://doi.org/10.1097/ALN.0b013e318225b80aCrossRefPubMedGoogle Scholar
  7. de Backer D, Taccone FS, Holsten R, et al., 2009. Influence of respiratory rate on stroke volume variation in mechanically ventilated patients. Anesthesiology, 110(5):1092–1097. https://doi.org/10.1097/ALN.0b013e31819db2a1CrossRefPubMedGoogle Scholar
  8. de Waal EE, Rex S, Kruitwagen CL, et al., 2009. Dynamic preload indicators fail to predict fluid responsiveness in open-chest conditions. Crit Care Med, 37(2):510–515. https://doi.org/10.1097/CCM.0b013e3181958bf7CrossRefPubMedGoogle Scholar
  9. Duperret S, Lhuillier F, Piriou V, et al., 2007. Increased intraabdominal pressure affects respiratory variations in arterial pressure in normovolaemic and hypovolaemic mechanically ventilated healthy pigs. Intensive Care Med, 33(1):163–171. https://doi.org/10.1007/s00134-006-0412-2CrossRefPubMedGoogle Scholar
  10. Goepfert MS, Richter HP, zu Eulenburg C, et al., 2013. Individually optimized hemodynamic therapy reduces complications and length of stay in the intensive care unit: a prospective, randomized controlled trial. Anesthesiology, 119(4):824–836. https://doi.org/10.1097/ALN.0b013e31829bd770CrossRefPubMedGoogle Scholar
  11. Hofkens PJ, Verrijcken A, Merveille K, et al., 2015. Common pitfalls and tips and tricks to get the most out of your transpulmonary thermodilution device: results of a survey and state-of-the-art review. Anaesthesiol Intensive Ther, 47(2):89–116. https://doi.org/10.5603/AIT.a2014.0068CrossRefPubMedGoogle Scholar
  12. Huber W, Umgelter A, Reindl W, et al., 2008. Volume assessment in patients with necrotizing pancreatitis: a comparison of intrathoracic blood volume index, central venous pressure, and hematocrit, and their correlation to cardiac index and extravascular lung water index. Crit Care Med, 36(8):2348–2354. https://doi.org/10.1097/CCM.0b013e3181809928CrossRefPubMedGoogle Scholar
  13. Huber W, Höllthaler J, Schuster T, et al., 2014. Association between different indexations of extravascular lung water (EVLW) and PaO2/FiO2: a two-center study in 231 patients. PLoS ONE, 9(8):e103854. https://doi.org/10.1371/journal.pone.0103854CrossRefPubMedPubMedCentralGoogle Scholar
  14. Huber W, Kemnitz V, Phillip V, et al., 2015. Outcome prediction, fluid resuscitation, pain management, and antibiotic prophylaxis in severe acute pancreatitis. Intensive Care Med, 41(11):2034–2035. https://doi.org/10.1007/s00134-015-4022-8CrossRefPubMedGoogle Scholar
  15. Huber W, Phillip V, Höllthaler J, et al., 2016a. Femoral indicator injection for transpulmonary thermodilution using the EV1000/VolumeView®: do the same criteria apply as for the PiCCO®? J Zhejiang Univ-Sci B (Biomed & Biotechnol), 17(7):561–567. https://doi.org/10.1631/jzus.B1500244CrossRefGoogle Scholar
  16. Huber W, Fuchs S, Minning A, et al., 2016b. Transpulmonary thermodilution (TPTD) before, during and after sustained low efficiency dialysis (SLED). A prospective study on feasibility of TPTD and prediction of successful fluid removal. PLoS ONE, 11(4):e0153430. https://doi.org/10.1371/journal.pone.0153430CrossRefPubMedPubMedCentralGoogle Scholar
  17. Huber W, Henschel B, Schmid R, et al., 2017. First clinical experience in 14 patients treated with ADVOS: a study on feasibility, safety and efficacy of a new type of albumin dialysis. BMC Gastroenterol, 17(1):32. https://doi.org/10.1186/s12876-017-0569-xCrossRefPubMedPubMedCentralGoogle Scholar
  18. Lakhal K, Ehrmann S, Benzekri-Lefèvre D, et al., 2011. Respiratory pulse pressure variation fails to predict fluid responsiveness in acute respiratory distress syndrome. Crit Care, 15(2):R85. https://doi.org/10.1186/cc10083CrossRefPubMedPubMedCentralGoogle Scholar
  19. Maguire S, Rinehart J, Vakharia S, et al., 2011. Respiratory variation in pulse pressure and plethysmographic waveforms: intraoperative applicability in a North American academic center. Anesth Analg, 112(1):94–96. https://doi.org/10.1213/ANE.0b013e318200366bCrossRefPubMedGoogle Scholar
  20. Mahjoub Y, Lejeune V, Muller L, et al., 2014. Evaluation of pulse pressure variation validity criteria in critically ill patients: a prospective observational multicentre pointprevalence study. Br J Anaesth, 112(4):681–685. https://doi.org/10.1093/bja/aet442CrossRefPubMedGoogle Scholar
  21. Mair S, Tschirdewahn J, Götz S, et al., 2016. Applicability of stroke volume variation in patients of a general intensive care unit: a longitudinal observational study. J Clin Monit Comput, 31(6):1177–1187. https://doi.org/10.1007/s10877-016-9951-4CrossRefPubMedGoogle Scholar
  22. Michard F, 2005. Volume management using dynamic parameters: the good, the bad, and the ugly. Chest, 128(4): 1902–1903. https://doi.org/10.1378/chest.128.4.1902CrossRefPubMedGoogle Scholar
  23. Michard F, Lopes MR, Auler JO Jr, 2007. Pulse pressure variation: beyond the fluid management of patients with shock. Crit Care, 11(3):131. https://doi.org/10.1186/cc5905CrossRefPubMedPubMedCentralGoogle Scholar
  24. Monnet X, Bleibtreu A, Ferré A, et al., 2012. Passive leg-raising and end-expiratory occlusion tests perform better than pulse pressure variation in patients with low respiratory system compliance. Crit Care Med, 40(1): 152–157. https://doi.org/10.1097/CCM.0b013e31822f08d7CrossRefPubMedGoogle Scholar
  25. Moreau R, Jalan R, Gines P, et al., 2013. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology, 144(7):1426–1437. https://doi.org/10.1053/j.gastro.2013.02.042CrossRefPubMedGoogle Scholar
  26. Muller L, Louart G, Bousquet PJ, et al., 2010. The influence of the airway driving pressure on pulsed pressure variation as a predictor of fluid responsiveness. Intensive Care Med, 36(3):496–503. https://doi.org/10.1007/s00134-009-1686-yCrossRefPubMedGoogle Scholar
  27. Perel A, 1998. Assessing fluid responsiveness by the systolic pressure variation in mechanically ventilated patients. Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology, 89(6):1309–1310. https://doi.org/10.1097/00000542-199812000-00005PubMedGoogle Scholar
  28. Phillip V, Saugel B, Ernesti C, et al., 2014. Effects of paracentesis on hemodynamic parameters and respiratory function in critically ill patients. BMC Gastroenterol, 14(1):18. https://doi.org/10.1186/1471-230X-14-18CrossRefPubMedPubMedCentralGoogle Scholar
  29. Preisman S, Kogan S, Berkenstadt H, et al., 2005. Predicting fluid responsiveness in patients undergoing cardiac surgery: functional haemodynamic parameters including the respiratory systolic variation test and static preload indicators. Br J Anaesth, 95(6):746–755. https://doi.org/10.1093/bja/aei262CrossRefPubMedGoogle Scholar
  30. Renner J, Gruenewald M, Quaden R, et al., 2009. Influence of increased intra-abdominal pressure on fluid responsiveness predicted by pulse pressure variation and stroke volume variation in a porcine model. Crit Care Med, 37(2):650–658. https://doi.org/10.1097/CCM.0b013e3181959864CrossRefPubMedGoogle Scholar
  31. Reuter DA, Felbinger TW, Schmidt C, et al., 2002. Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med, 28(4): 392–398. https://doi.org/10.1007/s00134-002-1211-zCrossRefPubMedGoogle Scholar
  32. Reuter DA, Goepfert MS, Goresch T, et al., 2005. Assessing fluid responsiveness during open chest conditions. Br J Anaesth, 94(3):318–323. https://doi.org/10.1093/bja/aei043CrossRefPubMedGoogle Scholar
  33. Rhodes A, Evans LE, Alhazzani W, et al., 2017. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med, 43(3):304–377. https://doi.org/10.1007/s00134-017-4683-6CrossRefPubMedGoogle Scholar
  34. Sakka SG, 2015. Hemodynamic monitoring in the critically ill patient—current status and perspective. Front Med (Lausanne), 2:44. https://doi.org/10.3389/fmed.2015.00044Google Scholar
  35. Saugel B, Phillip V, Gaa J, et al., 2012. Advanced hemodynamic monitoring before and after transjugular intrahepatic portosystemic shunt: implications for selection of patients—a prospective study. Radiology, 262(1):343–352. https://doi.org/10.1148/radiol.11110043CrossRefPubMedGoogle Scholar
  36. Sun Y, Lu ZH, Zhang XS, et al., 2015. The effects of fluid resuscitation according to picco on the early stage of severe acute pancreatitis. Pancreatology, 15(5):497–502. https://doi.org/10.1016/j.pan.2015.06.006CrossRefPubMedGoogle Scholar
  37. Trepte CJ, Bachmann KA, Stork JH, et al., 2013. The impact of early goal-directed fluid management on survival in an experimental model of severe acute pancreatitis. Intensive Care Med, 39(4):717–726. https://doi.org/10.1007/s00134-012-2775-xCrossRefPubMedGoogle Scholar
  38. Umgelter A, Schmid RM, 2009. Terlipressin for hepatorenal syndrome—what is the role of plasma expansion and hemodynamic monitoring? Z Gastroenterol, 47(3):307–308 (in German). https://doi.org/10.1055/s-0028-1109113CrossRefPubMedGoogle Scholar
  39. Umgelter A, Reindl W, Wagner KS, et al., 2008. Effects of plasma expansion with albumin and paracentesis on haemodynamics and kidney function in critically ill cirrhotic patients with tense ascites and hepatorenal syndrome: a prospective uncontrolled trial. Crit Care, 12(1): R4. https://doi.org/10.1186/cc6765CrossRefPubMedPubMedCentralGoogle Scholar
  40. Umgelter A, Reindl W, Miedaner M, et al., 2009. Failure of current antibiotic first-line regimens and mortality in hospitalized patients with spontaneous bacterial peritonitis. Infection, 37(1):2–8. https://doi.org/10.1007/s15010-008-8060-9CrossRefPubMedGoogle Scholar
  41. Villar J, Pérez-Méndez L, Kacmarek RM, 2016. The berlin definition met our needs: no. Intensive Care Med, 42(5): 648–650. https://doi.org/10.1007/s00134-016-4242-6CrossRefPubMedGoogle Scholar
  42. Wendon J, Bernal W, Willars C, et al., 2011. Critical care and cirrhosis: outcome and benefit. Curr Opin Crit Care, 17(5):533–537. https://doi.org/10.1097/MCC.0b013e32834ab06fCrossRefPubMedGoogle Scholar
  43. Yu WQ, Zhang Y, Zhang SY, et al., 2016. Impact of misplaced subclavian vein catheter into jugular vein on transpulmonary thermodilution measurement variables. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 17(1):60–66. https://doi.org/10.1631/jzus.B1500167CrossRefGoogle Scholar
  44. Zhang Z, Lu B, Sheng X, et al., 2011. Accuracy of stroke volume variation in predicting fluid responsiveness: a systematic review and meta-analysis. J Anesth, 25(6): 904–916. https://doi.org/10.1007/s00540-011-1217-1CrossRefPubMedGoogle Scholar
  45. Zhang Z, Lu B, Ni H, 2012. Prognostic value of extravascular lung water index in critically ill patients: a systematic review of the literature. J Crit Care, 27(4):420.e1-420.e8. https://doi.org/10.1016/j.jcrc.2011.09.006PubMedGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.II. Medizinische Klinik und PoliklinikKlinikum rechts der Isar der Technischen Universität MünchenMünchenGermany
  2. 2.Universitätsklinik für Innere Medizin I, Salzburger LandesklinikenUniversitätsklinikum SalzburgSalzburgAustria
  3. 3.II. Medizinische KlinikUniversitätsklinikum MannheimMannheimGermany
  4. 4.Klinik für Innere MedizinRoMed Klinik Bad AiblingBad AiblingGermany

Personalised recommendations