Advertisement

Journal of Zhejiang University-SCIENCE B

, Volume 19, Issue 7, pp 535–546 | Cite as

A biomechanical case study on the optimal orthodontic force on the maxillary canine tooth based on finite element analysis

  • Jian-lei Wu
  • Yun-feng Liu
  • Wei Peng
  • Hui-yue Dong
  • Jian-xing Zhang
Article
  • 23 Downloads

Abstract

Excessive forces may cause root resorption and insufficient forces would introduce no effect in orthodontics. The objective of this study was to investigate the optimal orthodontic forces on a maxillary canine, using hydrostatic stress and logarithmic strain of the periodontal ligament (PDL) as indicators. Finite element models of a maxillary canine and surrounding tissues were developed. Distal translation/tipping forces, labial translation/tipping forces, and extrusion forces ranging from 0 to 300 g (100 g=0.98 N) were applied to the canine, as well as the force moment around the canine long axis ranging from 0 to 300 g·mm. The stress/strain of the PDL was quantified by nonlinear finite element analysis, and an absolute stress range between 0.47 kPa (capillary pressure) and 12.8 kPa (80% of human systolic blood pressure) was considered to be optimal, whereas an absolute strain exceeding 0.24% (80% of peak strain during canine maximal moving velocity) was considered optimal strain. The stress/strain distributions within the PDL were acquired for various canine movements, and the optimal orthodontic forces were calculated. As a result the optimal tipping forces (40–44 g for distal-direction and 28–32 g for labial-direction) were smaller than the translation forces (130–137 g for distal-direction and 110–124 g for labial-direction). In addition, the optimal forces for labialdirection motion (110–124 g for translation and 28–32 g for tipping) were smaller than those for distal-direction motion (130–137 g for translation and 40–44 g for tipping). Compared with previous results, the force interval was smaller than before and was therefore more conducive to the guidance of clinical treatment. The finite element analysis results provide new insights into orthodontic biomechanics and could help to optimize orthodontic treatment plans.

Key words

Biomechanics Optimal orthodontic force Finite element analysis Periodontal ligament 

基于有限元分析的上颌尖牙最佳正畸力的生物力学探究

中文概要

目的

探究上颌尖牙在不同移动方式下的最佳正畸力。

创新点

综合考虑牙周膜的静水压应力和对数应变,进一步优化尖牙移动的最佳正畸力区间。

方法

对尖牙施加范围在0~300 g(100 g=0.98 N)的远中向、唇向和拔出向的整体移动力和倾斜移动力,以及范围在0~300 g·mm 的绕尖牙牙长轴向的扭转力矩,通过非线性有限元分析对牙周膜的应力应变进行定量评价。约定牙周膜应力在0.47 kPa(毛细血管压力)至12.8 kPa(人类心脏收缩压力的80%)之间的为最佳应力;以及牙周膜应变大于0.24%(尖牙最大移动速度时的牙周膜应变的80%)为最佳应变。

结论

尖牙倾斜移动时的最佳正畸力范围(远中向为 40~44 g,唇向为28~32 g)小于其整体移动(远 中向为130~137 g,唇向为110~124 g);尖牙远 中向移动时的最佳正畸力范围(整体移动为 110~124 g,倾斜移动为28~32 g)小于其唇向移 动(整体移动为130~137 g,倾斜移动为40~44 g)。 与已有的研究结果相比,最佳正畸力范围进一步 缩小,对临床正畸治疗具有较好的指导意义。

关键词

生物力学 最佳正畸力 有限元分析 牙周膜 

CLC number

R783.5 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11585_2018_195_MOESM1_ESM.pdf (3.6 mb)
A biomechanical case study on the optimal orthodontic force on the maxillary canine tooth based on finite element analysis

References

  1. Anneke N, John DC, Tom L, et al., 2017. Importance of the variable periodontal ligament geometry for whole tooth mechanical function: a validated numerical study. J Mech Behav Biomed, 67:61–73. https://doi.org/10.1016/j.jmbbm.2016.11.020CrossRefGoogle Scholar
  2. Burstone CJ, Pryputniewicz RJ, 1980. Holographic determination of centers of rotation produced by orthodontic forces. Am J Orthod, 77(4):396–409. https://doi.org/10.1016/0002-9416(80)90105-0CrossRefPubMedGoogle Scholar
  3. Chen JN, Li W, Swain MV, et al., 2014. A periodontal ligament driven remodeling algorithm for orthodontic tooth movement. J Biomech, 47(7):1689–1695. https://doi.org/10.1016/j.jbiomech.2014.02.030CrossRefPubMedGoogle Scholar
  4. Choy K, Pae EK, Park Y, et al., 2000. Effect of root and bone morphology on the stress distribution in the periodontal ligament. Am J Orthod Dentofacial Orthop, 117(1): 98–105. https://doi.org/10.1016/S0889-5406(00)70254-XCrossRefPubMedGoogle Scholar
  5. Dorow C, Sander FG, 2005. Development of a model for the simulation of orthodontic load on lower first premolars using the finite element method. J Orofac Orthop, 66(3): 208–218. https://doi.org/10.1007/s00056-005-0416-5CrossRefPubMedGoogle Scholar
  6. Field C, Ichim I, Swain MV, et al., 2009. Mechanical responses to orthodontic loading: a 3-dimensional finite element multi-tooth model. Am J Orthod Dentofacial Orthop, 135(2):174–181. https://doi.org/10.1016/j.ajodo.2007.03.032CrossRefPubMedGoogle Scholar
  7. Han G, Huang SF, Vonden-Hoff JW, et al., 2005. Root resorption after orthodontic intrusion and extrusion: an intraindividual study. Angle Orthod, 75(6):912–918.PubMedGoogle Scholar
  8. Hemanth M, Raghuveer HP, Rani MS, et al., 2015. An analysis of the stress induced in the periodontal ligament during extrusion and rotation movements—Part II: a comparison of linear vs nonlinear FEM linear study. J Contem Dent Pract, 16(10):819–823. https://doi.org/10.5005/jp-journals-10024-1763CrossRefGoogle Scholar
  9. Hohmann A, Wolfram U, Geiger M, et al., 2007. Periodontal ligament hydrostatic pressure with areas of root resorption after application of a continuous torque moment. Angle Orthod, 77(4):653–659.CrossRefPubMedGoogle Scholar
  10. Hohmann A, Wolfram U, Geiger M, et al., 2009. Correspondences of hydrostatic pressure in periodontal ligament with regions of root resorption: a clinical and a finite element study of the same human teeth. Comput Methods Programs Biomed, 93(2):155–161. https://doi.org/10.1016/j.cmpb.2008.09.004CrossRefPubMedGoogle Scholar
  11. Huang HX, Tang WC, Yan B, et al., 2016. Mechanical responses of the periodontal ligament based on an exponential hyperelastic model: a combined experimental and finite element method. Comput Method Biomech, 19(2): 188–198. https://doi.org/10.1080/10255842.2015.1006207CrossRefGoogle Scholar
  12. Kim T, Suh J, Kim N, et al., 2010. Optimum conditions for parallel translation of maxillary anterior teeth under retraction force determined with the finite element method. Am J Orthod Dentofacial Orthop, 137(5):639–647. https://doi.org/10.1016/j.ajodo.2008.05.016CrossRefPubMedGoogle Scholar
  13. Li ZJ, 2014. Oral orthodontic force simulation and tooth movement modulation research. MS Thesis, Harbin Institute of Technology, Harbin, China (in Chinese).Google Scholar
  14. Liao ZP, Chen JN, Li W, et al., 2016. Biomechanical investigation into the role of the periodontal ligament in optimizing orthodontic force: a finite element case study. Arch Oral Biol, 66:98–107. https://doi.org/10.1016/j.archoralbio.2016.02.012CrossRefPubMedGoogle Scholar
  15. Lombardo L, Stefanoni F, Mollica F, et al., 2012. Three dimensional finite-element analysis of a central lower incisor under labial and lingual loads. Prog Orthod, 13(2): 154–163. https://doi.org/10.1016/j.pio.2011.10.005CrossRefPubMedGoogle Scholar
  16. Natali AN, Pavan PG, Carniel EL, et al., 2004. Viscoelastic response of the periodontal ligament: an experimentalnumerical analysis. Connect Tissue Res, 45(4-5):222–230. https://doi.org/10.1080/03008200490885742CrossRefPubMedGoogle Scholar
  17. Rygh P, 1973. Ultrastructural changes in pressure zones of human periodontium incident to orthodontic tooth movement. Acta Odontol Scand, 31(2):109–122.CrossRefPubMedGoogle Scholar
  18. Toms SR, Eberhardt AW, 2003. A nonlinear finite element analysis of the periodontal ligament under orthodontic tooth loading. Am J Orthod Dentofacial Orthop, 123(6): 657–665. https://doi.org/10.1016/S0889-5406(03)00164-1CrossRefPubMedGoogle Scholar
  19. Oskui IZ, Hashemi A, 2016. Dynamic tensile properties of bovine periodontal ligament: a nonlinear viscoelastic model. J Biomech, 49(5):756–764. https://doi.org/10.1016/j.jbiomech.2016.02.020CrossRefPubMedGoogle Scholar
  20. Oskui IZ, Hashemia A, Jafarzadehb H, 2016. Biomechanical behavior of bovine periodontal ligament: experimental tests and constitutive model. J Mech Behav Biomed Mater, 62:599–606. https://doi.org/10.1016/j.jmbbm.2016.05.036CrossRefPubMedGoogle Scholar
  21. Parker PJ, Harris EF, 1998. Directions of orthodontic tooth movements associated with external apical root resorption of the maxillary central incisor. Am J Orthod Dentofacial Orthop, 114(6):677–683. https://doi.org/10.1016/S0889-5406(98)70200-8CrossRefPubMedGoogle Scholar
  22. Provatidis CG, 2000. A comparative FEM-study of tooth mobility using isotropic and anisotropic models of the periodontal ligament. Med Eng Phys, 22(5):359–370. https://doi.org/10.1016/S1350-4533(00)00055-2CrossRefPubMedGoogle Scholar
  23. Qian H, Chen J, Katona TR, 2001. The influence of PDL principal fibers in a 3-dimensional analysis of orthodontic tooth movement. Am J Orthod Dentofacial Orthop, 120(3): 272–279. https://doi.org/10.1067/mod.2001.116085CrossRefPubMedGoogle Scholar
  24. Qian YL, Fan YB, Liu Z, et al., 2008. Numerical simulation of tooth movement in a therapy period. Clin Biomech, 23(S1):S48–S52. https://doi.org/10.1016/j.clinbiomech.2007.08.023CrossRefGoogle Scholar
  25. Rohan M, Laxmikanth C, Satish S, et al., 2015. A comparative study of forces in labial and lingual orthodontics using finite element method. J Indian Orthod Soc, 49(1):15–18. https://doi.org/10.4103/0301-5742.158628CrossRefGoogle Scholar
  26. Rudolph DJ, Willes PMG, Sameshima GT, 2001. A finite element model of apical force distribution from orthodontic tooth movement. Angle Orthod, 71(2):127–131.PubMedGoogle Scholar
  27. Storey E, Smith R, 1952. Force in orthodontics and its relation to tooth movement. Aust Dent J, 56:11–18.Google Scholar
  28. Toms SR, Dakin GJ, Lemons JE, et al., 2002. Quasi-linear viscoelastic behavior of the human periodontal ligament. J Biomech, 35(10):1411–1415. https://doi.org/10.1016/S0021-9290(02)00166-5CrossRefPubMedGoogle Scholar
  29. Wei ZG, Yu XL, Xu XG, et al., 2014. Experiment and hydromechanical coupling simulation study on the human periodontal ligament. Comput Methods Programs Biomed, 113(3):749–756. https://doi.org/10.1016/j.cmpb.2013.12.011CrossRefPubMedGoogle Scholar
  30. Wilson AN, Middleton J, Jones ML, et al., 1994. The finite element analysis of stress in the periodontal ligament when subject to vertical orthodontic forces. Br J Orthod, 21(2):161–167.CrossRefPubMedGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ministry of Education & Zhejiang ProvinceKey Laboratory of E&M (Zhejiang University of Technology)HangzhouChina
  2. 2.Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical EngineeringZhejiang UniversityHangzhouChina
  3. 3.Department of StomatologyZhejiang Provincial People’s HospitalHangzhouChina

Personalised recommendations