Advertisement

Journal of Zhejiang University-SCIENCE B

, Volume 20, Issue 2, pp 116–130 | Cite as

Neuromodulation for tinnitus treatment: an overview of invasive and non-invasive techniques

  • Nicole PeterEmail author
  • Tobias Kleinjung
Review
  • 95 Downloads

Abstract

Tinnitus is defined as a perception of sound without any external sound source. Chronic tinnitus is a frequent condition that can affect the quality of life. So far, no causal cure for tinnitus has been documented, and most pharmacologic and psychosomatic treatment modalities aim to diminish tinnitus’ impact on the quality of life. Neuromodulation, a novel therapeutic modality, which aims at alternating nerve activity through a targeted delivery of a stimulus, has emerged as a potential option in tinnitus treatment. This review provides a brief overview of the current neuromodulation techniques as tinnitus treatment options. The main intention is to provide updated knowledge especially for medical professionals counselling tinnitus patients in this emerging field of medicine. Non-invasive methods such as repetitive transcranial magnetic stimulation, transcranial electrical stimulation, neurofeedback, and transcutaneous vagus nerve stimulation were included, as well as invasive methods such as implanted vagus nerve stimulation and invasive brain stimulation. Some of these neuromodulation techniques revealed promising results; nevertheless, further research is needed, especially regarding the pathophysiological principle as to how these neuromodulation techniques work and what neuronal change they induce. Various studies suggest that individually different brain states and networks are involved in the generation and perception of tinnitus. Therefore, in the future, individually tailored neuromodulation strategies could be a promising approach in tinnitus treatment for achieving a more substantial and longer lasting improvement of complaints.

Key words

Tinnitus Neuromodulation Invasive technique Non-invasive technique 

神经调节方法治疗耳鸣——侵入性和非侵入性技术概述

概 要

耳鸣被定义为非外部声音产生的听觉感知, 慢性耳鸣是一种影响生活质量的常见病症。 目前为止, 尚无任何针对耳鸣诱因的治疗方法, 大部分的药理和心理治疗方法都旨在减少耳鸣对生活 质量的影响。 神经调节是一种新型的治疗方式, 该方法通过定向刺激来改变神经活动, 已经成为耳鸣治疗的一个潜在选择。 本文就当前神经调节技术治疗耳鸣做了简要概述, 主要目的是为相关人士提供更新的知识介绍, 特别是在这个新兴医学领域的专业工作者。 本文介绍了包括经颅磁重复刺激、 经颅电刺激、 神经反馈和经皮迷走神经刺激等非侵入性方法, 以及植入的迷走神经刺激和侵入性脑刺激等侵入性方法。 虽然一些研究已经展示了神经调节技术的良好应用前景, 但是相关的研究还需要加强, 尤其是关于神经调节的病理生理学原理, 即这些神经调节技术如何发挥作用以及神经调节所引起的神经元变化。 多项研究表明, 不同个体的大脑活动状态和神经连接网络都参与了对耳鸣的产生和感知。 因此, 未来个性化定制的神经调节策略可能是一个有前景的耳鸣治疗方法, 从而更显著、 更持久地改善这个常见病症状。

关键词

耳鸣 神经调节 侵入性方法 非侵入性方法 

CLC number

R764.45 

References

  1. Adjamian P, Hall DA, Palmer AR, et al., 2014. Neuroanatomical abnormalities in chronic tinnitus in the human brain. Neurosci Biobehav Rev, 45:119–133. https://doi.org/10.1016/j.neubiorev.2014.05.013Google Scholar
  2. Anders M, Dvorakova J, Rathova L, et al., 2010. Efficacy of repetitive transcranial magnetic stimulation for the treatment of refractory chronic tinnitus: a randomized, placebo controlled study. Neuro Endocrinol Lett, 31(2):238–249.Google Scholar
  3. Axelsson A, Ringdahl A, 1989. Tinnitus—a study of its prevalence and characteristics. Br J Audiol, 23(1):53–62. https://doi.org/10.3109/03005368909077819Google Scholar
  4. Bittar RG, Burn SC, Bain PG, et al., 2005a. Deep brain stimulation for movement disorders and pain. J Clin Neurosci, 12(4):457–463. https://doi.org/10.1016/j.jocn.2004.09.001Google Scholar
  5. Bittar RG, Kar-Purkayastha I, Owen SL, et al., 2005b. Deep brain stimulation for pain relief: a meta-analysis. J Clin Neurosci, 12(5):515–519. https://doi.org/10.1016/j.jocn.2004.10.005Google Scholar
  6. Chen R, Classen J, Gerloff C, et al., 1997. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology, 48(5):1398–1403. https://doi.org/10.1212/WNL.48.5.1398Google Scholar
  7. Cheung SW, Larson PS, 2010. Tinnitus modulation by deep brain stimulation in locus of caudate neurons (area LC). Neuroscience, 169(4):1768–1778. https://doi.org/10.1016/j.neuroscience.2010.06.007Google Scholar
  8. Chung HK, Tsai CH, Lin YC, et al., 2012. Effectiveness of theta-burst repetitive transcranial magnetic stimulation for treating chronic tinnitus. Audiol Neurotol, 17(2):112–120. https://doi.org/10.1159/000330882Google Scholar
  9. Claes L, Stamberger H, van de Heyning P, et al., 2014. Auditory cortex tACS and tRNS for tinnitus: single versus multiple sessions. Neural Plast, 2014:436713. https://doi.org/10.1155/2014/436713Google Scholar
  10. Crocetti A, Forti S, Del Bo L, 2011. Neurofeedback for subjective tinnitus patients. Auris Nasus Larynx, 38(6):735–738. https://doi.org/10.1016/j.anl.2011.02.003Google Scholar
  11. Datta A, Bansal V, Diaz J, et al., 2009. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul, 2(4):201–207. https://doi.org/10.1016/j.brs.2009.03.005Google Scholar
  12. Davis A, Rafaie EA, 2000. Epidemiology of tinnitus. In: Tyler RS (Ed.), Tinnitus Handbook.Google Scholar
  13. Singular, San Diego, CA. de Ridder D, Vanneste S, 2012. EEG driven tDCS versus bifrontal tDCS for tinnitus. Front Psychiatry, 3:84. https://doi.org/10.3389/fpsyt.2012.00084Google Scholar
  14. de Ridder D, Vanneste S, 2014. Targeting the parahippocampal area by auditory cortex stimulation in tinnitus. Brain Stimul, 7(5):709–717. https://doi.org/10.1016/j.brs.2014.04.004Google Scholar
  15. de Ridder D, de Mulder G, Walsh V, et al., 2004. Magnetic and electrical stimulation of the auditory cortex for intractable tinnitus: case report. J Neurosurg, 100(3):560–564.Google Scholar
  16. de Ridder D, de Mulder G, Verstraeten E, et al., 2006. Primary and secondary auditory cortex stimulation for intractable tinnitus. ORL J Otorhinolaryngol Relat Spec, 68(1):48–54, discussion 54–55. https://doi.org/10.1159/000090491Google Scholar
  17. de Ridder D, van der Loo E, van der Kelen K, et al., 2007a. Theta, alpha and beta burst transcranial magnetic stimulation: brain modulation in tinnitus. Int J Med Sci, 4(5): 237–241.Google Scholar
  18. de Ridder D, van der Loo E, van der Kelen K, et al., 2007b. Do tonic and burst TMS modulate the lemniscal and extralemniscal system differentially? Int J Med Sci, 4(5): 242–246.Google Scholar
  19. de Ridder D, Elgoyhen AB, Romo R, et al., 2011a. Phantom percepts: tinnitus and pain as persisting aversive memory networks. Proc Natl Acad Sci USA, 108(20):8075–8080. https://doi.org/10.1073/pnas.1018466108Google Scholar
  20. de Ridder D, van der Loo E, Vanneste S, et al., 2011b. Thetagamma dysrhythmia and auditory phantom perception. J Neurosurg, 114(4):912–921. https://doi.org/10.3171/2010.11.JNS10335Google Scholar
  21. de Ridder D, Song JJ, Vanneste S, 2013. Frontal cortex TMS for tinnitus. Brain Stimul, 6(3):355–362. https://doi.org/10.1016/j.brs.2012.07.002Google Scholar
  22. de Ridder D, Vanneste S, Weisz N, et al., 2014a. An integrative model of auditory phantom perception: tinnitus as a unified percept of interacting separable subnetworks. Neurosci Biobehav Rev, 44:16–32. https://doi.org/10.1016/j.neubiorev.2013.03.021Google Scholar
  23. de Ridder D, Vanneste S, Engineer ND, et al., 2014b. Safety and efficacy of vagus nerve stimulation paired with tones for the treatment of tinnitus: a case series. Neuromodulation, 17(2):170–179. https://doi.org/10.1111/ner.12127Google Scholar
  24. de Ridder D, Kilgard M, Engineer N, et al., 2015a. Placebocontrolled vagus nerve stimulation paired with tones in a patient with refractory tinnitus: a case report. Otol Neurotol, 36(4):575–580. https://doi.org/10.1097/MAO.0000000000000704Google Scholar
  25. de Ridder D, Vanneste S, Langguth B, et al., 2015b. Thalamocortical dysrhythmia: a theoretical update in tinnitus. Front Neurol, 6:124. https://doi.org/10.3389/fneur.2015.00124Google Scholar
  26. de Ridder D, Joos K, Vanneste S, 2016. Anterior cingulate implants for tinnitus: report of 2 cases. J Neurosurg, 124(4): 893–901. https://doi.org/10.3171/2015.3.JNS142880Google Scholar
  27. Dobie RA, 2003. Depression and tinnitus. Otolaryngol Clin North Am, 36(2):383–388.Google Scholar
  28. Dohrmann K, Weisz N, Schlee W, et al., 2007a. Neurofeedback for treating tinnitus. Prog Brain Res, 166:473–485. https://doi.org/10.1016/S0079-6123(07)66046-4Google Scholar
  29. Dohrmann K, Elbert T, Schlee W, et al., 2007b. Tuning the tinnitus percept by modification of synchronous brain activity. Restor Neurol Neurosci, 25(3–4): 371–378.Google Scholar
  30. Edwards D, Cortes M, Datta A, et al., 2013. Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS. NeuroImage, 74:266–275. https://doi.org/10.1016/j.neuroimage.2013.01.042Google Scholar
  31. Eggermont JJ, Roberts LE, 2004. The neuroscience of tinnitus. Trends Neurosci, 27(11):676–682. https://doi.org/10.1016/j.tins.2004.08.010Google Scholar
  32. Engineer ND, Moller AR, Kilgard MP, 2013. Directing neural plasticity to understand and treat tinnitus. Hear Res, 295: 58–66. https://doi.org/10.1016/j.heares.2012.10.001Google Scholar
  33. Faber M, Vanneste S, Fregni F, et al., 2012. Top down prefrontal affective modulation of tinnitus with multiple sessions of tDCS of dorsolateral prefrontal cortex. Brain Stimul, 5(4):492–498. https://doi.org/10.1016/j.brs.2011.09.003Google Scholar
  34. Fertonani A, Pirulli C, Miniussi C, 2011. Random noise stimulation improves neuroplasticity in perceptual learning. J Neurosci, 31(43):15416–15423. https://doi.org/10.1523/JNEUROSCI.2002-11.2011Google Scholar
  35. Folmer RL, Griest SE, Meikle MB, et al., 1999. Tinnitus severity, loudness, and depression. Otolaryngol Head Neck Surg, 121(1):48–51. https://doi.org/10.1016/S0194-5998(99)70123-3Google Scholar
  36. Frank E, Schecklmann M, Landgrebe M, et al., 2012. Treatment of chronic tinnitus with repeated sessions of prefrontal transcranial direct current stimulation: outcomes from an open-label pilot study. J Neurol, 259(2):327–333. https://doi.org/10.1007/s00415-011-6189-4Google Scholar
  37. Fregni F, Marcondes R, Boggio PS, et al., 2006. Transient tinnitus suppression induced by repetitive transcranial magnetic stimulation and transcranial direct current stimulation. Eur J Neurol, 13(9):996–1001. https://doi.org/10.1111/j.1468-1331.2006.01414.xGoogle Scholar
  38. Garin P, Gilain C, van Damme JP, et al., 2011. Short- and long-lasting tinnitus relief induced by transcranial direct current stimulation. J Neurol, 258(11):1940–1948. https://doi.org/10.1007/s00415-011-6037-6Google Scholar
  39. Gosepath K, Nafe B, Ziegler E, et al., 2001. Neurofeedback in therapy of tinnitus. HNO, 49(1):29–35 (in German). https://doi.org/10.1007/s001060050704Google Scholar
  40. Hartmann T, Lorenz I, Müller N, et al., 2014. The effects of neurofeedback on oscillatory processes related to tinnitus. Brain Topogr, 27(1):149–157. https://doi.org/10.1007/s10548-013-0295-9Google Scholar
  41. Hoare DJ, Stacey PC, Hall DA, 2010. The efficacy of auditory perceptual training for tinnitus: a systematic review. Ann Behav Med, 40(3):313–324. https://doi.org/10.1007/s12160-010-9213-5Google Scholar
  42. Hoare DJ, van Labeke N, McCormack A, et al., 2014. Gameplay as a source of intrinsic motivation in a randomized controlled trial of auditory training for tinnitus. PLoS ONE, 9(9):e107430. https://doi.org/10.1371/journal.pone.0107430Google Scholar
  43. Hoare DJ, Adjamian P, Sereda M, 2016. Electrical stimulation of the ear, head, cranial nerve, or cortex for the treatment of tinnitus: a scoping review. Neural Plast, 2016:5130503. https://doi.org/10.1155/2016/5130503Google Scholar
  44. Hoffman HJ, Reed GW, 2004. Epidemiology of tinnitus. In: Snow JB (Ed.), Tinnitus: Theory and Management. BC Decker Inc., Hamilton, London, p.16-41.Google Scholar
  45. Hoffman RE, Cavus I, 2002. Slow transcranial magnetic stimulation, long-term depotentiation, and brain hyperexcitability disorders. Am J Psychiatry, 159(7):1093–1102. https://doi.org/10.1176/appi.ajp.159.7.1093Google Scholar
  46. Hyvärinen P, Yrttiaho S, Lehtimäki J, et al., 2015. Transcutaneous vagus nerve stimulation modulates tinnitus-related beta- and gamma-band activity. Ear Hear, 36(3):e76-e85. https://doi.org/10.1097/AUD.0000000000000123Google Scholar
  47. Jackson P, 1985. A comparison of the effects of eighth nerve section with lidocaine on tinnitus. J Laryngol Otol, 99(7): 663–666.Google Scholar
  48. Jastreboff PJ, 1990. Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res, 8(4):221–254. https://doi.org/10.1016/0168-0102(90)90031-9Google Scholar
  49. Joliot M, Ribary U, Llinás R, 1994. Human oscillatory brain activity near 40Hz coexists with cognitive temporal binding. Proc Natl Acad Sci USA, 91(24):11748–11751.Google Scholar
  50. Joos K, de Ridder D, van de Heyning P, et al., 2014. Polarity specific suppression effects of transcranial direct current stimulation for tinnitus. Neural Plast, 2014:930860. https://doi.org/10.1155/2014/930860Google Scholar
  51. Joos K, de Ridder D, Vanneste S, 2015. The differential effect of low-versus high-frequency random noise stimulation in the treatment of tinnitus. Exp Brain Res, 233(5): 1433–1440. https://doi.org/10.1007/s00221-015-4217-9Google Scholar
  52. Kaltenbach JA, Afman CE, 2000. Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its resemblance to tone-evoked activity: a physiological model for tinnitus. Hear Res, 140(1–2): 165–172. https://doi.org/10.1016/S0378-5955(99)00197-5Google Scholar
  53. Khedr EM, Rothwell JC, Ahmed MA, et al., 2008. Effect of daily repetitive transcranial magnetic stimulation for treatment of tinnitus: comparison of different stimulus frequencies. J Neurol Neurosurg Psychiat, 79(2):212–215. https://doi.org/10.1136/jnnp.2007.127712Google Scholar
  54. Khedr EM, Rothwell JC, El-Atar A, 2009. One-year follow up of patients with chronic tinnitus treated with left temporoparietal rTMS. Eur J Neurol, 16(3):404–408. https://doi.org/10.1111/j.1468-1331.2008.02522.xGoogle Scholar
  55. Kilgard MP, Merzenich MM, 1998a. Cortical map reorganization enabled by nucleus basalis activity. Science, 279(5357): 1714–1718. https://doi.org/10.1126/science.279.5357.1714Google Scholar
  56. Kilgard MP, Merzenich MM, 1998b. Plasticity of temporal information processing in the primary auditory cortex. Nat Neurosci, 1(8):727–731. https://doi.org/10.1038/3729Google Scholar
  57. Kleinjung T, Eichhammer P, Langguth B, et al., 2005. Longterm effects of repetitive transcranial magnetic stimulation (rTMS) in patients with chronic tinnitus. Otolaryngol Head Neck Surg, 132(4):566–569. https://doi.org/10.1016/j.otohns.2004.09.134Google Scholar
  58. Kleinjung T, Eichhammer P, Landgrebe M, et al., 2008. Combined temporal and prefrontal transcranial magnetic stimulation for tinnitus treatment: a pilot study. Otolaryngol Head Neck Surg, 138(4):497–501. https://doi.org/10.1016/j.otohns.2007.12.022Google Scholar
  59. Koller WC, Lyons KE, Wilkinson SB, et al., 1999. Efficacy of unilateral deep brain stimulation of the VIM nucleus of the thalamus for essential head tremor. Movement Disord, 14(5):847–850. https://doi.org/10.1002/1531-8257(199909)14:5<847::AI D-MDS1021>3.0.CO;2-GGoogle Scholar
  60. Krack P, Batir A, van Blercom N, et al., 2003. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med, 349(20):1925–1934. https://doi.org/10.1056/NEJMoa035275Google Scholar
  61. Kreuzer PM, Landgrebe M, Schecklmann M, et al., 2011. Can temporal repetitive transcranial magnetic stimulation be enhanced by targeting affective components of tinnitus with frontal rTMS? A randomized controlled pilot trial.Front Syst Neurosci, 5:88. https://doi.org/10.3389/fnsys.2011.00088Google Scholar
  62. Kreuzer PM, Landgrebe M, Husser O, et al., 2012. Transcutaneous vagus nerve stimulation: retrospective assessment of cardiac safety in a pilot study. Front Psychiatry, 3:70. https://doi.org/10.3389/fpsyt.2012.00070Google Scholar
  63. Kreuzer PM, Landgrebe M, Resch M, et al., 2014. Feasibility, safety and efficacy of transcutaneous vagus nerve stimulation in chronic tinnitus: an open pilot study. Brain Stimul, 7(5):740–747. https://doi.org/10.1016/j.brs.2014.05.003Google Scholar
  64. Langguth B, Schecklmann M, Lehner A, et al., 2012. Neuroimaging and neuromodulation: complementary approaches for identifying the neuronal correlates of tinnitus. Front Syst Neurosci, 6:15. https://doi.org/10.3389/fnsys.2012.00015Google Scholar
  65. Langguth B, Kreuzer PM, Kleinjung T, et al., 2013. Tinnitus: causes and clinical management. Lancet Neurol, 12(9): 920–930. https://doi.org/10.1016/S1474-4422(13)70160-1Google Scholar
  66. Langguth B, Landgrebe M, Frank E, et al., 2014. Efficacy of different protocols of transcranial magnetic stimulation for the treatment of tinnitus: pooled analysis of two randomized controlled studies. World J Biol Psychiatry, 15(4):276–285. https://doi.org/10.3109/15622975.2012.708438Google Scholar
  67. Lansbergen MM, van Dongen-Boomsma M, Buitelaar JK, et al., 2011. ADHD and EEG-neurofeedback: a doubleblind randomized placebo-controlled feasibility study. J Neural Transm, 118(2):275–284. https://doi.org/10.1007/s00702-010-0524-2Google Scholar
  68. Leaver AM, Renier L, Chevillet MA, et al., 2011. Dysregulation of limbic and auditory networks in tinnitus. Neuron, 69(1):33–43. https://doi.org/10.1016/j.neuron.2010.12.002Google Scholar
  69. Leaver AM, Seydell-Greenwald A, Turesky TK, et al., 2012. Cortico-limbic morphology separates tinnitus from tinnitus distress. Front Syst Neurosci, 6:21. https://doi.org/10.3389/fnsys.2012.00021Google Scholar
  70. Leaver AM, Seydell-Greenwald A, Rauschecker JP, 2016a. Auditory-limbic interactions in chronic tinnitus: challenges for neuroimaging research. Hear Res, 334:49–57. https://doi.org/10.1016/j.heares.2015.08.005Google Scholar
  71. Leaver AM, Turesky TK, Seydell-Greenwald A, et al., 2016b. Intrinsic network activity in tinnitus investigated using functional MRI. Hum Brain Mapp, 37(8):2717–2735. https://doi.org/10.1002/hbm.23204Google Scholar
  72. Lee HY, Yoo SD, Ryu EW, et al., 2013. Short term effects of repetitive transcranial magnetic stimulation in patients with catastrophic intractable tinnitus: preliminary report. Clin Exp Otorhinolaryngol, 6(2):63–67. https://doi.org/10.3342/ceo.2013.6.2.63Google Scholar
  73. Lefaucheur JP, Andre-Obadia N, Antal A, et al., 2014. Evidencebased guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol, 125(11):2150–2206. https://doi.org/10.1016/j.clinph.2014.05.021Google Scholar
  74. Lehner A, Schecklmann M, Kreuzer PM, et al., 2013a. Comparing single-site with multisite rTMS for the treatment of chronic tinnitus—clinical effects and neuroscientific insights: study protocol for a randomized controlled trial. Trials, 14(1):269. https://doi.org/10.1186/1745-6215-14-269Google Scholar
  75. Lehner A, Schecklmann M, Poeppl TB, et al., 2013b. Multisite rTMS for the treatment of chronic tinnitus: stimulation of the cortical tinnitus network—a pilot study. Brain Topogr, 26(3):501–510. https://doi.org/10.1007/s10548-012-0268-4Google Scholar
  76. Lehner A, Schecklmann M, Poeppl TB, et al., 2015. Efficacy and safety of repeated courses of rTMS treatment in patients with chronic subjective tinnitus. BioMed Res Int, 2015:975808. https://doi.org/10.1155/2015/975808Google Scholar
  77. Lehtimӓki J, Hyvӓrinen P, Ylikoski M, et al., 2013. Transcutaneous vagus nerve stimulation in tinnitus: a pilot study. Acta Oto-Laryngol, 133(4):378–382. https://doi.org/10.3109/00016489.2012.750736Google Scholar
  78. Li TT, Wang ZJ, Yang SB, et al., 2015. Transcutaneous electrical stimulation at auricular acupoints innervated by auricular branch of vagus nerve pairing tone for tinnitus: study protocol for a randomized controlled clinical trial. Trials, 16(1):101. https://doi.org/10.1186/s13063-015-0630-4Google Scholar
  79. Llinás RR, Ribary U, Jeanmonod D, et al., 1999. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA, 96(26):15222–15227.Google Scholar
  80. Llinás R, Urbano FJ, Leznik E, et al., 2005. Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci, 28(6):325–333. https://doi.org/10.1016/j.tins.2005.04.006Google Scholar
  81. Lorenz I, Muller N, Schlee W, et al., 2009. Loss of alpha power is related to increased gamma synchronization— a marker of reduced inhibition in tinnitus? Neurosci Lett, 453(3):225–228. https://doi.org/10.1016/j.neulet.2009.02.028Google Scholar
  82. Lubar JF, Bahler WW, 1976. Behavioral management of epileptic seizures following EEG biofeedback training of the sensorimotor rhythm. Biofeedback Self Regul, 1(1):77–104.Google Scholar
  83. Lubar JF, Shouse MN, 1976. EEG and behavioral changes in a hyperkinetic child concurrent with training of the sensorimotor rhythm (SMR): a preliminary report. Biofeedback Self Regul, 1(3):293–306.Google Scholar
  84. Marchand S, Kupers RC, Bushnell MC, et al., 2003. Analgesic and placebo effects of thalamic stimulation. Pain, 105(3): 481–488. https://doi.org/10.1016/S0304-3959(03)00265-3Google Scholar
  85. Marcondes RA, Sanchez TG, Kii MA, et al., 2010. Repetitive transcranial magnetic stimulation improve tinnitus in normal hearing patients: a double-blind controlled, clinicaland neuroimaging outcome study. Eur J Neurol, 17(1): 38–44. https://doi.org/10.1111/j.1468-1331.2009.02730.xGoogle Scholar
  86. Mennemeier M, Chelette KC, Allen S, et al., 2011. Variable changes in PET activity before and after rTMS treatment for tinnitus. Laryngoscope, 121(4):815–822. https://doi.org/10.1002/lary.21425Google Scholar
  87. Meyer M, Neff P, Liem F, et al., 2016. Differential tinnitusrelated neuroplastic alterations of cortical thickness and surface area. Hear Res, 342:1–12. https://doi.org/10.1016/j.heares.2016.08.016Google Scholar
  88. Miranda PC, Lomarev M, Hallett M, 2006. Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol, 117(7):1623–1629. https://doi.org/10.1016/j.clinph.2006.04.009Google Scholar
  89. Mühlau M, Rauschecker JP, Oestreicher E, et al., 2006. Structural brain changes in tinnitus. Cerebral Cortex, 16(9):1283–1288. https://doi.org/10.1093/cercor/bhj070Google Scholar
  90. Mühlnickel W, Elbert T, Taub E, et al., 1998. Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci USA, 95(17):10340–10343. https://doi.org/10.1073/pnas.95.17.10340Google Scholar
  91. Newman CW, Jacobson GP, Spitzer JB, 1996. Development of the Tinnitus Handicap Inventory. Arch Otolaryngol Head Neck Surg, 122(2):143–148. https://doi.org/10.1001/archotol.1996.01890140029007Google Scholar
  92. Nondahl DM, Cruickshanks KJ, Dalton DS, et al., 2007. The impact of tinnitus on quality of life in older adults. J Am Acad Audiol, 18(3):257–266. https://doi.org/10.3766/jaaa.18.3.7Google Scholar
  93. Owen SL, Green AL, Stein JF, et al., 2006. Deep brain stimulation for the alleviation of post-stroke neuropathic pain. Pain, 120(1–2): 202–206. https://doi.org/10.1016/j.pain.2005.09.035Google Scholar
  94. Pandya DN, Rosene DL, Doolittle AM, 1994. Corticothalamic connections of auditory-related areas of the temporal lobe in the rhesus monkey. J Comp Neurol, 345(3):447–471. https://doi.org/10.1002/cne.903450311Google Scholar
  95. Paulus W, 2011. Transcranial electrical stimulation (tES-tDCS; tRNS, tACS) methods. Neuropsychol Rehab, 21(5):602–617. https://doi.org/10.1080/09602011.2011.557292Google Scholar
  96. Prestes R, Daniela G, 2009. Impact of tinnitus on quality of life, loudness and pitch match, and high-frequency audiometry. Int Tinnitus J, 15(2):134–138.Google Scholar
  97. Punte AK, Vermeire K, Hofkens A, et al., 2011. Cochlear implantation as a durable tinnitus treatment in singlesided deafness. Cochlear Implants Int, 12(Suppl 1): S26-S29. https://doi.org/10.1179/146701011X13001035752336Google Scholar
  98. Ramos Á, Polo R, Masgoret E, et al., 2012. Cochlear implant in patients with sudden unilateral sensorineural hearing loss and associated tinnitus. Acta Otorrinolaringol Esp, 63(1):15–20. https://doi.org/10.1016/j.otorri.2011.07.004Google Scholar
  99. Rauschecker JP, Leaver AM, Mühlau M, 2010. Tuning out the noise: limbic-auditory interactions in tinnitus. Neuron, 66(6):819–826. https://doi.org/10.1016/j.neuron.2010.04.032Google Scholar
  100. Rauschecker JP, May ES, Maudoux A, et al., 2015. Frontostriatal gating of tinnitus and chronic pain. Trends Cogn Sci, 19(10):567–578. https://doi.org/10.1016/j.tics.2015.08.002Google Scholar
  101. Rehncrona S, Johnels B, Widner H, et al., 2003. Long-term efficacy of thalamic deep brain stimulation for tremor: double-blind assessments. Mov Disord, 18(2):163–170. https://doi.org/10.1002/mds.10309Google Scholar
  102. Rossi S, de Capua A, Ulivelli M, et al., 2007. Effects of repetitive transcranial magnetic stimulation on chronic tinnitus: a randomised, crossover, double blind, placebo controlled study. J Neurol Neurosurg Psychiatry, 78(8): 857–863. https://doi.org/10.1136/jnnp.2006.105007Google Scholar
  103. Saiote C, Polanía R, Rosenberger K, et al., 2013. Highfrequency TRNS reduces BOLD activity during visuomotor learning. PLoS ONE, 8(3):e59669. https://doi.org/10.1371/journal.pone.0059669Google Scholar
  104. Salvi RJ, Wang J, Ding D, 2000. Auditory plasticity and hyperactivity following cochlear damage. Hear Res, 147(1-2): 261–274. https://doi.org/10.1016/S0378-5955(00)00136-2Google Scholar
  105. Schenk S, Lamm K, Gündel H, et al., 2005. Neurofeedbackbased EEG alpha and EEG beta training. Effectiveness in patients with chronically decompensated tinnitus. HNO, 53(1):29–37 (in German). https://doi.org/10.1007/s00106-004-1066-4Google Scholar
  106. Schlee W, Weisz N, Bertrand O, et al., 2008. Using auditory steady state responses to outline the functional connectivity in the tinnitus brain. PLoS ONE, 3(11):e3720. https://doi.org/10.1371/journal.pone.0003720Google Scholar
  107. Schlee W, Mueller N, Hartmann T, et al., 2009. Mapping cortical hubs in tinnitus. BMC Biol, 7:80. https://doi.org/10.1186/1741-7007-7-80Google Scholar
  108. Sedley W, Gander PE, Kumar S, et al., 2015. Intracranial mapping of a cortical tinnitus system using residual inhibition. Curr Biol, 25(9):1208–1214. https://doi.org/10.1016/j.cub.2015.02.075Google Scholar
  109. Seidman MD, de Ridder D, Elisevich K, et al., 2008. Direct electrical stimulation of Heschl’s gyrus for tinnitus treatment. Laryngoscope, 118(3):491–500. https://doi.org/10.1097/MLG.0b013e31815daf5aGoogle Scholar
  110. Seydell-Greenwald A, Leaver AM, Turesky TK, et al., 2012. Functional MRI evidence for a role of ventral prefrontal cortex in tinnitus. Brain Res, 1485:22–39. https://doi.org/10.1016/j.brainres.2012.08.052Google Scholar
  111. Seydell-Greenwald A, Raven EP, Leaver AM, et al., 2014. Diffusion imaging of auditory and auditory-limbic connectivity in tinnitus: preliminary evidence and methodological challenges. Neural Plast, 2014:145943. https://doi.org/10.1155/2014/145943Google Scholar
  112. Shekhawat GS, Stinear CM, Searchfield GD, 2013. Transcranial direct current stimulation intensity and duration effects on tinnitus suppression. Neurorehab Neural Rep, 27(2):164–172. https://doi.org/10.1177/1545968312459908Google Scholar
  113. Shekhawat GS, Sundram F, Bikson M, et al., 2016. Intensity, duration, and location of high-definition transcranial direct current stimulation for tinnitus relief. Neurorehabil Neural Repair, 30(4):349–359. https://doi.org/10.1177/1545968315595286Google Scholar
  114. Shi Y, Burchiel KJ, Anderson VC, et al., 2009. Deep brain stimulation effects in patients with tinnitus. Otolaryngol Head Neck Surg, 141(2):285–287. https://doi.org/10.1016/j.otohns.2009.05.020Google Scholar
  115. Siebner HR, Filipovic SR, Rowe JB, et al., 2003. Patients with focal arm dystonia have increased sensitivity to slowfrequency repetitive TMS of the dorsal premotor cortex. Brain, 126(12):2710–2725. https://doi.org/10.1093/brain/awg282Google Scholar
  116. Smit JV, Janssen ML, Engelhard M, et al., 2016. The impact of deep brain stimulation on tinnitus. Surg Neurol Int, 7(Suppl 35): S848-S854. https://doi.org/10.4103/2152-7806.194156Google Scholar
  117. Soleimani R, Jalali MM, Hasandokht T, 2016. Therapeutic impact of repetitive transcranial magnetic stimulation (rTMS) on tinnitus: a systematic review and meta-analysis. Eur Arch Oto-Rhino-Laryngol, 273(7):1663–1675. https://doi.org/10.1007/s00405-015-3642-5Google Scholar
  118. Song JJ, Vanneste S, van de Heyning P, et al., 2012. Transcranial direct current stimulation in tinnitus patients: a systemic review and meta-analysis. Sci World J, 2012: 427941. https://doi.org/10.1100/2012/427941Google Scholar
  119. Tanibuchi I, Goldman-Rakic PS, 2003. Dissociation of spatial-, object-, and sound-coding neurons in the mediodorsal nucleus of the primate thalamus. J Neurophysiol, 89(2): 1067–1077. https://doi.org/10.1152/jn.00207.2002Google Scholar
  120. Terney D, Chaieb L, Moliadze V, et al., 2008. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci, 28(52):14147–14155. https://doi.org/10.1523/JNEUROSCI.4248-08.2008Google Scholar
  121. Theodoroff SM, Folmer RL, 2013. Repetitive transcranial magnetic stimulation as a treatment for chronic tinnitus: a critical review. Otol Neurotol, 34(2):199–208.Google Scholar
  122. To WT, Ost J, Hart Jr J, et al., 2017. The added value of auditory cortex transcranial random noise stimulation (tRNS) after bifrontal transcranial direct current stimulation (tDCS) for tinnitus. J Neural Transm, 124(1):79–88. https://doi.org/10.1007/s00702-016-1634-2Google Scholar
  123. van de Heyning P, Vermeire K, Diebl M, et al., 2008. Incapacitating unilateral tinnitus in single-sided deafness treated by cochlear implantation. Ann Otol Rhinol Laryngol, 117(9):645–652. https://doi.org/10.1177/000348940811700903Google Scholar
  124. van Doren J, Langguth B, Schecklmann M, 2014. Electroencephalographic effects of transcranial random noise stimulation in the auditory cortex. Brain Stimul, 7(6): 807–812. https://doi.org/10.1016/j.brs.2014.08.007Google Scholar
  125. Vanneste S, de Ridder D, 2011. Bifrontal transcranial direct current stimulation modulates tinnitus intensity and tinnitusdistress-related brain activity. Eur J Neurosci, 34(4):605–614. https://doi.org/10.1111/j.1460-9568.2011.07778.xGoogle Scholar
  126. Vanneste S, de Ridder D, 2012. Noninvasive and invasive neuromodulation for the treatment of tinnitus: an overview. Neuromodulation, 15(4):350–360. https://doi.org/10.1111/j.1525-1403.2012.00447.xGoogle Scholar
  127. Vanneste S, de Ridder D, 2013. Differences between a single session and repeated sessions of 1Hz TMS by doublecone coil prefrontal stimulation for the improvement of tinnitus. Brain Stimul, 6(2):155–159. https://doi.org/10.1016/j.brs.2012.03.019Google Scholar
  128. Vanneste S, Plazier M, Ost J, et al., 2010a. Bilateral dorsolateral prefrontal cortex modulation for tinnitus by transcranial direct current stimulation: a preliminary clinical study. Exp Brain Res, 202(4):779–785. https://doi.org/10.1007/s00221-010-2183-9Google Scholar
  129. Vanneste S, Plazier M, van der Loo E, et al., 2010b. The neural correlates of tinnitus-related distress. NeuroImage, 52(2): 470–480. https://doi.org/10.1016/j.neuroimage.2010.04.029Google Scholar
  130. Vanneste S, Focquaert F, van de Heyning P, et al., 2011a. Different resting state brain activity and functional connectivity in patients who respond and not respond to bifrontal tDCS for tinnitus suppression. Exp Brain Res, 210(2):217–227. https://doi.org/10.1007/s00221-011-2617-zGoogle Scholar
  131. Vanneste S, van de Heyning P, de Ridder D, 2011b. The neural network of phantom sound changes over time: a comparison between recent-onset and chronic tinnitus patients. Eur J Neurosci, 34(5):718–731. https://doi.org/10.1111/j.1460-9568.2011.07793.xGoogle Scholar
  132. Vanneste S, Walsh V, van de Heyning P, et al., 2013a. Comparing immediate transient tinnitus suppression using tACS and tDCS: a placebo-controlled study. Exp Brain Res, 226(1):25–31. https://doi.org/10.1007/s00221-013-3406-7Google Scholar
  133. Vanneste S, Fregni F, de Ridder D, 2013b. Head-to-head comparison of transcranial random noise stimulation, transcranial AC stimulation, and transcranial DC stimulation for Tinnitus. Front Psychiatry, 4:158. https://doi.org/10.3389/fpsyt.2013.00158Google Scholar
  134. Vidailhet M, Yelnik J, Lagrange C, et al., 2009. Bilateral pallidal deep brain stimulation for the treatment of patients with dystonia-choreoathetosis cerebral palsy: a prospective pilot study. Lancet Neurol, 8(8):709–717. https://doi.org/10.1016/S1474-4422(09)70151-6Google Scholar
  135. Weidt S, Delsignore A, Meyer M, et al., 2016. Which tinnitusrelated characteristics affect current health-related quality of life and depression? A cross-sectional cohort study. Psychiatry Res, 237:114–121. https://doi.org/10.1016/j.psychres.2016.01.065Google Scholar
  136. Weisz N, Moratti S, Meinzer M, et al., 2005. Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Med, 2(6):e153. https://doi.org/10.1371/journal.pmed.0020153Google Scholar
  137. Weisz N, Dohrmann K, Elbert T, 2007. The relevance of spontaneous activity for the coding of the tinnitus sensation. Prog Brain Res, 166:61–70. https://doi.org/10.1016/S0079-6123(07)66006-3Google Scholar
  138. Zaehle T, Lenz D, Ohl FW, et al., 2010a. Resonance phenomena in the human auditory cortex: individual resonance frequencies of the cerebral cortex determine electrophysiological responses. Exp Brain Res, 203(3):629–635. https://doi.org/10.1007/s00221-010-2265-8Google Scholar
  139. Zaehle T, Rach S, Herrmann CS, 2010b. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS ONE, 5(11):e13766. https://doi.org/10.1371/journal.pone.0013766Google Scholar
  140. Zaghi S, de Freitas Rezende L, de Oliveira LM, et al., 2010a. Inhibition of motor cortex excitability with 15Hz transcranial alternating current stimulation (tACS). Neurosci Lett, 479(3):211–214. https://doi.org/10.1016/j.neulet.2010.05.060Google Scholar
  141. Zaghi S, Acar M, Hultgren B, et al., 2010b. Noninvasive brain stimulation with low-intensity electrical currents: putative mechanisms of action for direct and alternating current stimulation. Neuroscientist, 16(3):285–307. https://doi.org/10.1177/1073858409336227Google Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Otorhinolaryngology, Head and Neck SurgeryUniversity Hospital ZürichZürichSwitzerland

Personalised recommendations