Advertisement

Journal of Zhejiang University-SCIENCE B

, Volume 19, Issue 7, pp 525–534 | Cite as

Effect of ultraviolet photofunctionalization of dental titanium implants on osseointegration

  • Christian Mehl
  • Matthias Kern
  • Friederike Neumann
  • Telse Bähr
  • Jörg Wiltfang
  • Volker Gassling
Article

Abstract

Objective

The aim of the current study was to evaluate the effect of ultraviolet (UV) photofunctionalization of dental titanium implants with exposure to the oral cavity on osseointegration in an animal model.

Methods

Forty-eight titanium implants (Camlog® Conelog® 4.3 mmx9.0 mm) were placed epicrestally into the edentulous jaws of three minipigs and implant stability was assessed by measuring the implant stability quotient (ISQ). Prior to implantation half of the implants were photofunctionalized with intense UV-light. After three months, the implants were exposed and ISQ was measured again. After six months of implant exposure, the minipigs were sacrificed and the harvested specimens were analyzed using histomorphometric, light, and fluorescence microscopy.

Main results

Forty-two of 48 implants osseointegrated. The overall mean bone-implant contact area (BIC) was (64±22)%. No significant differences were found in BIC or ISQ value (multivariate analysis of variance (MANOVA), P>0.05) between implants with and without exposure to UV photofunctionalization.

Conclusions

No significant effects were observed on osseointegration of dental titanium implants nine months after exposure of UV photofunctionalization.

Key words

Dental implant Osseointegration Photofunctionalization 

牙钛种植体的紫外线光化功能对骨整合的影响

中文概要

目的

通过在动物模组上植入钛种植体,测量紫外线光 化功能对于骨整合的作用和影响。

方法

在三只小型猪的无牙颌中植入共48 个钛种植体 (Camlog® Conelog® 4.3 mm×9.0 mm),测量其植 体稳定度数值(ISQ)。在植入手术前,用强紫外 光对一半的种植体进行光化处理。植入手术三个 月后,暴露种植体,再次测量ISQ。在暴露种植 体六个月后,处死动物,通过组织形态学、光学 和荧光显微镜对采样标本进行分析。

结论

在48 个种植体中,42 个完成骨整合。总平均骨- 植入物的接触面积(BIC)为(64±22)%。作为实 验因素的小型猪及紫外线光化功能没有造成BIC 和ISQ 值的显著差异(P>0.05,多元方差分析)。 九个月后,对钛种植体进行紫外线光化处理,没 有对骨结合产生显著的影响。

关键词

骨结合 光化功能 

CLC number

R783 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abboud M, Koeck B, Stark H, et al., 2005. Immediate loading of single-tooth implants in the posterior region. Int J Oral Maxillofac Implants, 20(1):61–68. https://doi.org/10.1016/j.prosdent.2005.04.021PubMedGoogle Scholar
  2. Adell R, Lekholm U, Rockler B, et al., 1981. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg, 10(6):387–416. https://doi.org/10.1016/S0300-9785(81)80077-4CrossRefPubMedGoogle Scholar
  3. Aita H, Hori N, Takeuchi M, et al., 2009. The effect of ultraviolet functionalization of titanium on integration with bone. Biomaterials, 30(6):1015–1025. https://doi.org/10.1016/j.biomaterials.2008.11.004CrossRefPubMedGoogle Scholar
  4. Att W, Ogawa T, 2012. Biological aging of implant surfaces and their restoration with ultraviolet light treatment: a novel understanding of osseointegration. Int J Oral Maxillofac Implants, 27(4):753–761. https://doi.org/10.1016/S0022-3913(12)60182-6PubMedGoogle Scholar
  5. Becker ST, Bolte H, Krapf O, et al., 2009. Endocultivation: 3D printed customized porous scaffolds for heterotopic bone induction. Oral Oncol, 45(11):e181–e188. https://doi.org/10.1016/j.oraloncology.2009.07.004CrossRefPubMedGoogle Scholar
  6. Bergkvist G, Nilner K, Sahlholm S, et al., 2009. Immediate loading of implants in the edentulous maxilla: use of an interim fixed prosthesis followed by a permanent fixed prosthesis: a 32-month prospective radiological and clinical study. Clin Implant Dent Relat Res, 11(1):1–10. https://doi.org/10.1111/j.1708-8208.2008.00094.xCrossRefPubMedGoogle Scholar
  7. Berglundh T, Abrahamsson I, Albouy JP, et al., 2007. Bone healing at implants with a fluoride-modified surface: an experimental study in dogs. Clin Oral Implants Res, 18(2): 147–152. https://doi.org/10.1111/j.1600-0501.2006.01309.xCrossRefPubMedGoogle Scholar
  8. Chuang SK, Wei LJ, Douglass CW, et al., 2002. Risk factors for dental implant failure: a strategy for the analysis of clustered failure-time observations. J Dent Res, 81(8): 572–577. https://doi.org/10.1177/154405910208100814CrossRefPubMedGoogle Scholar
  9. Covani U, Ricci M, Bozzolo G, et al., 2011. Analysis of the pattern of the alveolar ridge remodelling following single tooth extraction. Clin Oral Implants Res, 22(8):820–825. https://doi.org/10.1111/j.1600-0501.2010.02060.xCrossRefPubMedGoogle Scholar
  10. de Maeztu MA, Braceras I, Alava JI, et al., 2008. Improvement of osseointegration of titanium dental implant surfaces modified with CO ions: a comparative histomorphometric study in beagle dogs. Int J Oral Maxillofac Surg, 37(5): 441–447. https://doi.org/10.1016/j.ijom.2008.01.010CrossRefPubMedGoogle Scholar
  11. Donath K, Breuner G, 1982. A method for the study of undecalcified bones and teeth with attached soft tissues. The Säge-Schliff (sawing and grinding) technique. J Oral Pathol, 11(4):318–326. https://doi.org/10.1111/j.1600-0714.1982.tb00172.xCrossRefPubMedGoogle Scholar
  12. Elsubeihi ES, Heersche JN, 2004. Quantitative assessment of post-extraction healing and alveolar ridge remodelling of the mandible in female rats. Arch Oral Biol, 49(5): 401–412. https://doi.org/10.1016/j.archoralbio.2003.12.003CrossRefPubMedGoogle Scholar
  13. Eriksen EF, Gundersen HJ, Melsen F, et al., 1984. Reconstruction of the formative site in iliac trabecular bone in 20 normal individuals employing a kinetic model for matrix and mineral apposition. Metab Bone Dis Relat Res, 5(5):243–252. https://doi.org/10.1016/0221-8747(84)90066-3CrossRefPubMedGoogle Scholar
  14. Funato A, Ogawa T, 2013. Photofunctionalized dental implants: a case series in compromised bone. Int J Oral Maxillofac Implants, 28(6):1589–1601. https://doi.org/10.11607/jomi.3232CrossRefPubMedGoogle Scholar
  15. Funato A, Yamada M, Ogawa T, 2013. Success rate, healing time, and implant stability of photofunctionalized dental implants. Int J Oral Maxillofac Implants, 28(5):1261–1271. https://doi.org/10.11607/jomi.3263CrossRefPubMedGoogle Scholar
  16. Heydecke G, McFarland DH, Feine JS, et al., 2004. Speech with maxillary implant prostheses: ratings of articulation. J Dent Res, 83(3):236–240. https://doi.org/10.1177/154405910408300310CrossRefPubMedGoogle Scholar
  17. Ishii K, Matsuo M, Hoshi N, et al., 2016. Effect of ultraviolet irradiation of the implant surface on progression of periimplantitis— a pilot study in dogs. Implant Dent, 25(1): 47–53. https://doi.org/10.1097/ID.0000000000000332CrossRefPubMedGoogle Scholar
  18. Lentrodt J, Bull HG, 1976. Animal experimental studies on bone regeneration following drilling of the bone. Dtsch Zahnarztl Z, 31(2):115–124 (in German).PubMedGoogle Scholar
  19. Maló P, de Araújo Nobre M, Lopes A, et al., 2012. ‘All-on-4’ immediate-function concept for completely edentulous maxillae: a clinical report on the medium (3 years) and long-term (5 years) outcomes. Clin Implant Dent Relat Res, 14(Suppl 1):e139–e150. https://doi.org/10.1111/j.1708-8208.2011.00395.xCrossRefPubMedGoogle Scholar
  20. Mehl C, Becker ST, Acil Y, et al., 2013. Impact of vertical loading on the implant-bone interface. Clin Oral Implants Res, 24(8):949–956. https://doi.org/10.1111/j.1600-0501.2012.02487.xCrossRefPubMedGoogle Scholar
  21. Melas F, Marcenes W, Wright PS, 2001. Oral health impact on daily performance in patients with implant-stabilized overdentures and patients with conventional complete dentures. Int J Oral Maxillofac Implants, 16(5):700–712.PubMedGoogle Scholar
  22. Mosekilde L, 1995. Assessing bone quality—animal models in preclinical osteoporosis research. Bone, 17(4 Suppl): S343–S352. https://doi.org/10.1016/8756-3282(95)00312-2CrossRefGoogle Scholar
  23. Mosekilde L, Kragstrup J, Richards A, 1987. Compressive strength, ash weight, and volume of vertebral trabecular bone in experimental fluorosis in pigs. Calcif Tissue Int, 40(6):318–322. https://doi.org/10.1007/BF02556693CrossRefPubMedGoogle Scholar
  24. Moy PK, Medina D, Shetty V, et al., 2005. Dental implant failure rates and associated risk factors. Int J Oral Maxillofac Implants, 20(4):569–577.PubMedGoogle Scholar
  25. Nibali L, 2015. Aggressive periodontitis: microbes and host response, who to blame? Virulence, 6(3):223–228. https://doi.org/10.4161/21505594.2014.986407CrossRefPubMedPubMedCentralGoogle Scholar
  26. Nishimura K, Kato T, Ito T, et al., 2014. Influence of titanium ions on cytokine levels of murine splenocytes stimulated with periodontopathic bacterial lipopolysaccharide. Int J Oral Maxillofac Implants, 29(2):472–477. https://doi.org/10.11607/jomi.3434CrossRefPubMedGoogle Scholar
  27. Ogawa T, 2014. Ultraviolet photofunctionalization of titanium implants. Int J Oral Maxillofac Implants, 29(1):e95–e102. https://doi.org/10.11607/jomi.te47CrossRefPubMedGoogle Scholar
  28. Ogawa T, Nishimura I, 2003. Different bone integration profiles of turned and acid-etched implants associated with modulated expression of extracellular matrix genes. Int J Oral Maxillofac Implants, 18(2):200–210.PubMedGoogle Scholar
  29. Park DS, Kim IS, Kim H, et al., 2010. Improved biocompatibility of hydroxyapatite thin film prepared by aerosol deposition. J Biomed Mater Res B Appl Biomater, 94(2): 353–358. https://doi.org/10.1002/jbm.b.31658.CrossRefPubMedGoogle Scholar
  30. Park KH, Koak JY, Kim SK, et al., 2013. The effect of ultraviolet-C irradiation via a bactericidal ultraviolet sterilizer on an anodized titanium implant: a study in rabbits. Int J Oral Maxillofac Implants, 28(1):57–66. https://doi.org/10.11607/jomi.2638CrossRefPubMedGoogle Scholar
  31. Pyo SW, Park YB, Moon HS, et al., 2013. Photofunctionalization enhances bone-implant contact, dynamics of interfacial osteogenesis, marginal bone seal, and removal torque value of implants: a dog jawbone study. Implant Dent, 22(6):666–675. https://doi.org/10.1097/ID.0000000000000003CrossRefPubMedGoogle Scholar
  32. Suzuki S, Kobayashi H, Ogawa T, 2013. Implant stability change and osseointegration speed of immediately loaded photofunctionalized implants. Implant Dent, 22(5):481–490. https://doi.org/10.1097/ID.0b013e31829deb62CrossRefPubMedGoogle Scholar
  33. Tealdo T, Bevilacqua M, Pera F, et al., 2008. Immediate function with fixed implant-supported maxillary dentures: a 12-month pilot study. J Prosthet Dent, 99(5):351–360. https://doi.org/10.1016/S0022-3913(08)60082-7CrossRefPubMedGoogle Scholar
  34. Urban IA, Jovanovic SA, Lozada JL, 2009. Vertical ridge augmentation using guided bone regeneration (GBR) in three clinical scenarios prior to implant placement: a retrospective study of 35 patients 12 to 72 months after loading. Int J Oral Maxillofac Implants, 24(3):502–510.PubMedGoogle Scholar
  35. van Kampen FM, van der Bilt A, Cune MS, et al., 2004. Masticatory function with implant-supported overdentures. J Dent Res, 83(9):708–711. https://doi.org/10.1177/154405910408300910CrossRefPubMedGoogle Scholar
  36. Wang R, Hashimoto K, Fujishima A, 1997. Light-induced amphiphilic surfaces. Nature, 388:431–432. https://doi.org/10.1038/41233CrossRefGoogle Scholar
  37. Weinlaender M, Kenney EB, Lekovic V, et al., 1992. Histomorphometry of bone apposition around three types of endosseous dental implants. Int J Oral Maxillofac Implants, 7(4):491–496.PubMedGoogle Scholar
  38. Zarb GA, Schmitt A, 1990. Terminal dentition in elderly patients and implant therapy alternatives. Int Dent J, 40(2): 67–73.PubMedGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Prosthodontics, Propaedeutics and Dental MaterialsChristian-Albrechts University at KielKielGermany
  2. 2.Private PracticeLehmkuhlenGermany
  3. 3.Department of Oral and Maxillofacial SurgeryChristian-Albrechts University at KielKielGermany

Personalised recommendations