Advertisement

Research laboratory for Smart Control Valves at Zhejiang University

  • Jin-yuan Qian
  • Bao-qing Liu
  • Zhi-xin Zhang
  • Sun-ting Yan
  • Li-long Chen
  • Zhi-jiang JinEmail author
Laboratory Report
  • 5 Downloads

浙江大学特种控制阀研究室

中文概要

目 的

目前大中型控制阀大多存在结构复杂、 驱动能耗大、 反应时间慢、 振动噪声大、 稳定性差和使用寿命短等缺点。 基于此, 浙江大学相关研究人员组建了特种控制阀研究室, 致力于提升控制阀的整体性能和设计水平。

研究点

本研究室的主要方向为:
  1. 1.

    控制阀内部流动特性分析和新结构设计开发;

     
  2. 2.

    流体目标流量、 温度、 压力和振动噪声等的智能控制研究;

     
  3. 3.

    适应纳米流体、 压缩氢气和高温高压过热蒸汽等新流体介质的智慧控制阀研究。

     

展 望

特种控制阀作为超超临界火电机组、 核电、 石化高压反应和百万吨级乙烯工程等国家重大重点工程的关键零部件之一, 将会在内流动机理、 新结构开发、 新流体介质和智能控制等研究领域得到广泛关注和长足发展。

关键词

控制阀 智能控制 流动控制 流动特性 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen FQ, Zhang M, Qian JY, et al., 2017. Thermo-mechanical stress and fatigue damage analysis on multi-stage high pressure reducing valve. Annals of Nuclear Energy, 110: 753–767. https://doi.org/10.1016/j.anucene.2017.07.021 CrossRefGoogle Scholar
  2. Hou CW, Qian JY, Chen FQ, et al., 2018. Parametric analysis on throttling components of multi-stage high pressure reducing valve. Applied Thermal Engineering, 128:1238–1248. https://doi.org/10.1016/j.applthermaleng.2017.09.081 CrossRefGoogle Scholar
  3. Jin ZJ, Gao ZX, Qian JY, et al., 2018a. A parametric study of hydrodynamic cavitation inside globe valves. ASME Journal of Fluids Engineering, 140(3):031208. https://doi.org/10.1115/1.4038090 CrossRefGoogle Scholar
  4. Jin ZJ, Gao ZX, Chen MR, et al., 2018b. Parametric study on Tesla valve with reverse flow for hydrogen decompression. International Journal of Hydrogen Energy, 43(18): 8888–8896. https://doi.org/10.1016/j.ijhydene.2018.03.014 CrossRefGoogle Scholar
  5. Qian JY, Wei L, Jin ZJ, et al., 2014. CFD analysis on the dynamic flow characteristics of the pilot-control globe valve. Energy Conversion and Management, 87:220–226. https://doi.org/10.1016/j.enconman.2014.07.018 CrossRefGoogle Scholar
  6. Qian JY, Zhang M, Lei LN, et al., 2016a. Mach number analysis on multi-stage perforated plates in high pressure reducing valve. Energy Conversion and Management, 119:81–90. https://doi.org/10.1016/j.enconman.2016.04.029 CrossRefGoogle Scholar
  7. Qian JY, Liu BZ, Jin ZJ, et al., 2016b. Numerical analysis of flow and cavitation characteristics in a pilot-control globe valve with different valve core displacements. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 17(1):54–64. https://doi.org/10.1631/jzus.A1500228 CrossRefGoogle Scholar
  8. Qian JY, Wei L, Zhang M, et al., 2017. Flow rate analysis of compressible superheated steam through pressure reducing valves. Energy, 135:650–658. https://doi.org/10.1016/j.energy.2017.06.170 CrossRefGoogle Scholar
  9. Qian JY, Gao ZX, Liu BZ, et al., 2018. Parametric study on fluid dynamics of pilot-control angle globe valve. ASME Journal of Fluids Engineering, 140(11):111103. https://doi.org/10.1115/1.4040037 CrossRefGoogle Scholar
  10. Qian JY, Chen MR, Liu XL, et al., 2019. A numerical investigation of the flow of nanofluids through a micro Tesla valve. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 20(1):50–60. https://doi.org/10.1631/jzus.A1800431 Google Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Process Equipment, College of Energy EngineeringZhejiang UniversityHangzhouChina
  2. 2.State Key Laboratory of Fluid Power and Mechatronic SystemsZhejiang UniversityHangzhouChina
  3. 3.Department of Energy SciencesLund UniversityLundSweden
  4. 4.Hangzhou Worldwise Valve Co., Ltd.HangzhouChina

Personalised recommendations