Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 20, Issue 9, pp 660–674 | Cite as

Grafting of nano-silica onto ramie fiber for enhanced mechanical and interfacial properties of ramie/epoxy composite

  • Anna Dilfi K. F.
  • Zi-jin Che
  • Gui-jun XianEmail author
Article
  • 5 Downloads

Abstract

To enhance the bonding properties between ramie fiber and epoxy resin, the ramie fiber was modified using nano-silica grafting. Hydrophilic nano-silica treated with water-soluble sodium dodecyl sulfate (SDS) and organic silane coupling agents was grafted onto the surface of ramie fiber. The surface roughness of the fibers was considerably increased after grafting. The nano-silica particles on the fiber surface enhanced the mechanical and thermal properties of the fiber-epoxy composite plates. Based on an analysis of contact angle measurements and a water absorption study, it was determined that the hydrophilicity of the treated fiber was weakened.

Key words

Nano-silica Sodium dodecyl sulfate (SDS) Silane coupling agent Ramie fiber Mechanical properties Interfacial properties 

苎麻表面接枝改性及其对苎麻纤维增强环氧复合 材料力学性能与界面性能的影响研究

概要

目 的

通过在苎麻纤维表面接枝纳米二氧化硅颗粒,改 善苎麻纤维与环氧树脂的界面粘结性能,从而提 升苎麻纤维增强环氧树脂复合材料的力学性能。

创新点

将纳米二氧化硅颗粒接枝到苎麻纤维表面,从而 大幅提升苎麻纤维与环氧树脂的界面粘结性能 与复合材料的力学性能。

方 法

利用十二烷基硫酸钠均匀分散二氧化硅纳米粒 子,并在硅烷偶联剂作用下,将二氧化硅纳米粒 子接枝到苎麻纤维表面。

结 论

纳米二氧化硅接枝到苎麻纤维表面大幅提升了纤 维表面粗糙度,降低了纤维亲水性能,升高了纤 维与环氧树脂的界面粘度,从而改善了复合材料 的力学性能。

关键词

纳米二氧化硅 十二烷基硫酸 硅烷偶联剂 苎麻纤维 力学性能 界面性能 

CLC number

TQ31 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. Abbasian M, Massoumi B, Mohammad-Rezaei R, et al., 2019. A novel epoxy-based resin nanocomposite: co-curing of epoxidized novolac and epoxidized poly(vinyl chloride) using amine-functionalized silica nanoparticles. Materials Research Express, 6:085346.  https://doi.org/10.1088/2053-1591/ab28c8
  2. Aissaoui N, Bergaoui L, Landoulsi J, et al., 2012. Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption. Langmuir, 28(1): 656–665.  https://doi.org/10.1021/la2036778 Google Scholar
  3. Al-Oweini R, El-Rassy H, 2009. Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R"Si(OR')3 precursors. Journal of Molecular Structure, 919(1-3):140–145.  https://doi.org/10.1016/j.molstruc.2008.08.025 Google Scholar
  4. ASTM, 2003. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM D790. American Society for Testing and Materials, West Conshohocken, USA.Google Scholar
  5. ASTM, 2016. Standard Test Method for Short-beam Strength of Polymer Matrix Composite Materials and Their Laminates, ASTM D2344. American Society for Testing and Materials, West Conshohocken, USA.Google Scholar
  6. ASTM, 2017. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM D3039M. American Society for Testing and Materials, West Conshohocken, USA.Google Scholar
  7. ASTM, 2018. Standard Test Method for Water Absorption of Plastics, ASTM D570. American Society for Testing and Materials, West Conshohocken, USA.Google Scholar
  8. Chen DK, Li J, Ren J, 2011. Influence of fiber surfacetreatment on interfacial property of poly(L-lactic acid)/ ramie fabric biocomposites under UV-irradiation hydrothermal aging. Materials Chemistry and Physics, 126(3): 524–531.  https://doi.org/10.1016/j.matchemphys.2011.01.035 Google Scholar
  9. Dilfi KF A, Balan A, Bin H, et al., 2018. Effect of surface modification of jute fiber on the mechanical properties and durability of jute fiber-reinforced epoxy composites. Polymer Composites, 39(S4):E2519–E2528.  https://doi.org/10.1002/pc.24817 Google Scholar
  10. Dilfi KF A, Che ZJ, Xian GJ, 2019. Grafting ramie fiber with carbon nanotube and its effect on the mechanical and interfacial properties of ramie/epoxy composites. Journal of Natural Fibers, 16(3):388–403.  https://doi.org/10.1080/15440478.2017.1423259 Google Scholar
  11. Fan ZH, Santare MH, Advani SG, 2008. Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 39(3): 540–554.  https://doi.org/10.1016/j.compositesa.2007.11.013 Google Scholar
  12. Feng YL, Hu YX, Zhao GY, et al., 2011. Preparation and mechanical properties of high-performance short ramie fiber-reinforced polypropylene composites. Journal of Applied Polymer Science, 122(3):1564–1571.  https://doi.org/10.1002/app.34281 Google Scholar
  13. Fogarty JC, Aktulga HM, Grama AY, et al., 2010. A reactive molecular dynamics simulation of the silica-water interface. Journal of Chemical Physics, 132(17):174704.  https://doi.org/10.1063/1.3407433 Google Scholar
  14. Gao X, Jensen RE, McKnight SH, et al., 2011. Effect of colloidal silica on the strength and energy absorption of glass fiber/epoxy interphases. Composites Part A: Applied Science and Manufacturing, 42(11):1738–1747.  https://doi.org/10.1016/j.compositesa.2011.07.029 Google Scholar
  15. Gu YZ, Tan XL, Yang ZJ, et al., 2014. Hot compaction and mechanical properties of ramie fabric/epoxy composite fabricated using vacuum assisted resin infusion molding. Materials & Design, 56:852–861.  https://doi.org/10.1016/j.matdes.2013.11.077 Google Scholar
  16. Hansen D, Bomholt N, Jeppesen JC, et al., 2017. Contact angle goniometry on single micron-scale fibers for composites. Applied Surface Science, 392:181–188.  https://doi.org/10.1016/j.apsusc.2016.09.018 Google Scholar
  17. Hsieh CT, Wu FL, Yang SY, 2008. Superhydrophobicity from composite nano/microstructures: carbon fabrics coated with silica nanoparticles. Surface and Coatings Technology, 202(24):6103–6108.  https://doi.org/10.1016/j.surfcoat.2008.07.006 Google Scholar
  18. Jia XL, Li G, Liu BY, et al., 2013. Multiscale reinforcement and interfacial strengthening on epoxy-based composites by silica nanoparticle-multiwalled carbon nanotube complex. Composites Part A: Applied Science and Manufacturing, 48:101–109.  https://doi.org/10.1016/j.compositesa.2013.01.001 Google Scholar
  19. John MJ, Thomas S, 2008. Biofibres and biocomposites. Carbohydrate Polymers, 71(3):343–364.  https://doi.org/10.1016/j.carbpol.2007.05.040 Google Scholar
  20. Kang S, Hong SI, Choe CR, et al., 2001. Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol–gel process. Polymer, 42(3):879–887.  https://doi.org/10.1016/S0032-3861(00)00392-X Google Scholar
  21. Khung YL, Ngalim SH, Meda L, et al., 2014. Preferential formation of Si–O–C over Si–C linkage upon thermal grafting on hydrogen-terminated silicon (111). Chemistry: A European Journal, 20(46):15151–15158.  https://doi.org/10.1002/chem.201403014 Google Scholar
  22. Kuzmin KL, Timoshkin IA, Gutnikov SI, et al., 2017. Effect of silane/nano-silica on the mechanical properties of basalt fiber reinforced epoxy composites. Composite Interfaces, 24(1):13–34.  https://doi.org/10.1080/09276440.2016.1182408 Google Scholar
  23. Li N, Hu P, Zhang XH, et al., 2013a. Effects of oxygen partial pressure and atomic oxygen on the microstructure of oxide scale of ZrB2–SiC composites at 1500 °C. Corrosion Science, 73:44–53.  https://doi.org/10.1016/j.corsci.2013.03.023 Google Scholar
  24. Li Y, Han BY, Liu L, et al., 2013b. Surface modification of silica by two-step method and properties of solution styrene butadiene rubber (SSBR) nanocomposites filled with modified silica. Composites Science and Technology, 88:69–75.  https://doi.org/10.1016/j.compscitech.2013.08.029 Google Scholar
  25. Linec M, Music B, 2019. The effects of silica-based fillers on the properties of epoxy molding compounds. Materials, 12(11):1801–1811.  https://doi.org/10.3390/ma12111811 Google Scholar
  26. Liu ZN, Xu KL, Sun H, et al., 2015. One-step synthesis of single-layer MnO2 nanosheets with multi-role sodium dodecyl sulfate for high-performance pseudocapacitors. Small, 11(18):2182–2191.  https://doi.org/10.1002/smll.201402222 Google Scholar
  27. Saba N, Jawaid M, Alothman OY, et al., 2016. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Construction and Building Materials, 106:149–159.  https://doi.org/10.1016/j.conbuildmat.2015.12.075 Google Scholar
  28. Shah DU, 2013. Developing plant fibre composites for structural applications by optimising composite parameters: a critical review. Journal of Materials Science, 48(18): 6083–6107.  https://doi.org/10.1007/s10853-013-7458-7 Google Scholar
  29. Shih YF, Huang CC, Chen PW, 2010. Biodegradable green composites reinforced by the fiber recycling from disposable chopsticks. Materials Science and Engineering: A, 527(6):1516–1521.  https://doi.org/10.1016/j.msea.2009.10.024 Google Scholar
  30. Siddiqui NA, Li EL, Sham ML, et al., 2010. Tensile strength of glass fibres with carbon nanotube–epoxy nanocomposite coating: effects of CNT morphology and dispersion state. Composites Part A: Applied Science and Manufacturing, 41(4):539–548.  https://doi.org/10.1016/j.compositesa.2009.12.011 Google Scholar
  31. Songolzadeh R, Moghadasi J, 2017. Stabilizing silica nanoparticles in high saline water by using ionic surfactants for wettability alteration application. Colloid and Polymer Science, 295(1):145–155.  https://doi.org/10.1007/s00396-016-3987-3 Google Scholar
  32. Sreekumar PA, Thomas SP, Saiter JM, et al., 2009. Effect of fiber surface modification on the mechanical and water absorption characteristics of sisal/polyester composites fabricated by resin transfer molding. Composites Part A: Applied Science and Manufacturing, 40(11):1777–1784.  https://doi.org/10.1016/j.compositesa.2009.08.013 Google Scholar
  33. Tserki V, Matzinos P, Zafeiropoulos NE, et al., 2006. Development of biodegradable composites with treated and compatibilized lignocellulosic fibers. Journal of Applied Polymer Science, 100(6):4703–4710.  https://doi.org/10.1002/app.23240 Google Scholar
  34. Varga C, Miskolczi N, Bartha L, et al., 2010. Improving the mechanical properties of glass-fibre-reinforced polyester composites by modification of fibre surface. Materials & Design, 31(1):185–193.  https://doi.org/10.1016/j.matdes.2009.06.034 Google Scholar
  35. Vashisth A, Bakis CE, 2019. Multiscale characterization and modeling of nanosilica-reinforced filament wound carbon/epoxy composite. Materials Performance and Characterization, 8(1):1–21.  https://doi.org/10.1520/mpc20180108 Google Scholar
  36. Wang HG, Xian GJ, Li H, 2015. Grafting of nano-TiO2 onto flax fibers and the enhancement of the mechanical properties of the flax fiber and flax fiber/epoxy composite. Composites Part A: Applied Science and Manufacturing, 76:172–180.  https://doi.org/10.1016/j.compositesa.2015.05.027 Google Scholar
  37. Wang ZW, Wang TJ, Wang ZW, et al., 2006. The adsorption and reaction of a titanate coupling reagent on the surfaces of different nanoparticles in supercritical CO2. Journal of Colloid and Interface Science, 304(1):152–159.  https://doi.org/10.1016/j.jcis.2006.08.039 MathSciNetGoogle Scholar
  38. Warrier A, Godara A, Rochez O, et al., 2010. The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix. Composites Part A: Applied Science and Manufacturing, 41(4):532–538.  https://doi.org/10.1016/j.compositesa.2010.01.001 Google Scholar
  39. Wei B, Song SH, Cao HL, 2011. Strengthening of basalt fibers with nano-SiO2–epoxy composite coating. Materials & Design, 32(8–9):4180–4186.  https://doi.org/10.1016/j.matdes.2011.04.041 Google Scholar
  40. Yeon J, van Duin ACT, 2016. Reaxff molecular dynamics simulations of hydroxylation kinetics for amorphous and nano-silica structure, and its relations with atomic strain energy. The Journal of Physical Chemistry C, 120(1): 305–317.  https://doi.org/10.1021/acs.jpcc.5b09784 Google Scholar
  41. Yu T, Ren J, Li SM, et al., 2010. Effect of fiber surfacetreatments on the properties of poly(lactic acid)/ ramie composites. Composites Part A: Applied Science and Manufacturing, 41(4):499–505.  https://doi.org/10.1016/j.compositesa.2009.12.006 Google Scholar
  42. Zeng Y, Liu HY, Mai YW, et al., 2012. Improving interlaminar fracture toughness of carbon fibre/epoxy laminates by incorporation of nano-particles. Composites Part B: Engineering, 43(1):90–94.  https://doi.org/10.1016/j.compositesb.2011.04.036 Google Scholar
  43. Zhang HB, Zheng WG, Yan Q, et al., 2010. Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer, 51(5): 1191–1196.  https://doi.org/10.1016/j.polymer.2010.01.027 Google Scholar
  44. Zhu ZH, Imada T, Asakura T, 2009. Preparation and characterization of regenerated fiber from the aqueous solution of Bombyx mori cocoon silk fibroin. Materials Chemistry and Physics, 117(2–3):430–433.  https://doi.org/10.1016/j.matchemphys.2009.06.028 Google Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Lab of Structures Dynamic Behavior and Control of the Ministry of EducationHarbin Institute of TechnologyHarbinChina
  2. 2.Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information TechnologyHarbin Institute of TechnologyHarbinChina
  3. 3.School of Civil EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations