Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 20, Issue 11, pp 864–881 | Cite as

Thermo-elasto-hydrodynamic analysis of triangular textured mechanical face seals

  • Xiao Yang
  • Xu-dong PengEmail author
  • Xiang-kai Meng
  • Jin-bo Jiang
  • Yu-ming Wang
Article
  • 45 Downloads

Abstract

A 3D thermo-elasto-hydrodynamic (TEHD) model is presented to study the effects of triangular dimples on the loadcarrying capacity, leakage and friction of a mechanical seal operated under mixed or full film lubrication conditions. The model is solved by the finite element method (FEM), which takes into account the effects of the Jakobsson-Floberg-Olsson (JFO) cavitation boundary condition, surface roughness, elastic-plastic contact, thermo-elastic deformation, and the temperature-viscosity relation. The numerical results of the TEHD model are quite different from those of the hydrodynamic (HD) and thermo-hydrodynamic (THD) models, especially at high speeds. In order to obtain the optimum shape and distribution of the triangular dimples, a comparative study is conducted to investigate different distributions of equilateral triangles and isosceles right triangles. The results show that a surface textured mechanical seal with isosceles right triangular dimples has the most significant hydrodynamic and pumping effects which, in turn, are beneficial to sealing face opening behavior and leakage limitation. The theoretical results are in good agreement with the experimental ones, and offer new guidance for the future design and development of high-speed mechanical seals for aviation piston pumps.

Keywords

Thermo-elasto-hydrodynamic (TEHD) Mechanical seal Surface texturing Triangular dimple Aviation piston pump 

三角形织构化机械密封的热弹流分析

概要

目的:为了提高机械密封的摩擦学特性和密封性能,建 立三维热弹性流体动力润滑理论模型来研究三 角形织构对机械密封性能的影响,并针对航空轴 向柱塞泵机械密封的实际工况,对织构的形状、 排布和深度进行优化。

创新点:1. 建立机械密封热弹性流体动力润滑模型,揭示 三角形织构在混合和全膜润滑条件下的减磨减 漏机理。2. 以低摩擦和低泄露为目标,采用数值 模拟和实验方法,优化三角形织构的形状和排布 方式。

方法:1. 通过理论推导,建立机械密封热弹性流体动力 润滑模型,并与热流体动力润滑模型和流体动力 润滑模型进行对比,发现热弹性流体动力模型更 符合实际情况(图6~10);2. 通过数值模拟,优 化三角形织构的形状、排布以及深度(图14~22)。

3. 通过实验研究,测得织构端面温度,验证热弹 流理论模型的正确性(图25)。

结论:1. 由于机械密封的热力变形,密封端面形成收敛 性间隙,因此更有利于减少泄漏;2. 与同向排布 相比,相向排布的三角形织构能产生更强的流体 动压效应,且内外径织构数目越多、数目差距越 小时,动压效应越强;3. 直角三角形织构的动压 效应强于等边三角形织构,并且在一定工况下能 产生足够的液膜承载力使密封端面开启。

关键词

热弹性流体 机械密封 表面织构 三角形微孔 航空柱塞泵 

CLC number

TH117 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. Adjemout M, Brunetiere N, Bouyer J, 2018. Friction and temperature reduction in a mechanical face seal by a surface texturing: comparison between TEHD simulations and experiments. Tribology Transactions, 61(6): 1084–1093. https://doi.org/10.1080/10402004.2018.1478053 CrossRefGoogle Scholar
  2. Adjemout M, Brunetiere N, Bouyer J, 2015a. Numerical analysis of the texture effect on the hydrodynamic performance of a mechanical seal. Surface Topography: Metrology and Properties, 4(1): 014002. https://doi.org/10.1088/205-672X/4/1/ 014002Google Scholar
  3. Adjemout M, Brunetiere N, Bouyer J, 2015b. Optimization of mesh density for numerical simulations of hydrodynamic lubrication considering textured surfaces. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 229(9):1132–1144.  https://doi.org/10.1177/1350650115574535 CrossRefGoogle Scholar
  4. Ayadi K, Brunetiere N, Tournerie B, et al., 2015. Experimental and numerical study of the lubrication regimes of a liquid mechanical seal. Tribology International, 92: 96–108. https://doi.org/10.1016/j.triboint.2015.05.022 CrossRefGoogle Scholar
  5. Bai SX, Peng XD, Li JY, et al., 2011. Experimental study on hydrodynamic effect of orientation micro-pored surfaces. Science China Technological Sciences, 54(3):659–662. https://doi.org/10.1007/s11431-010-4265-0 CrossRefGoogle Scholar
  6. Becker KM, 1963. Measurements of convective heat transfer from a horizontal cylinder rotating in a tank of water. International Journal of Heat and Mass Transfer, 6(12): 1053–1062. https://doi.org/10.1016/0017-9310(63)90006-1 CrossRefGoogle Scholar
  7. Chang WR, Etsion I, Bogy DB, 1987. An elastic-plastic model for the contact of rough surfaces. Journal of Tribology, 109(2):257–263. https://doi.org/10.1115/1.3261348 CrossRefGoogle Scholar
  8. Etsion I, 2004. Improving tribological performance of mechanical components by laser surface texturing. Tribology Letters, 17(4):733–737. https://doi.org/10.1007/s11249-004-8081-1 CrossRefGoogle Scholar
  9. Etsion I, 2005. State of the art in laser surface texturing. Journal of Tribology, 127(1):248–253. https://doi.org/10.1007/978-3-642-03653-8_252 CrossRefGoogle Scholar
  10. Etsion I, Burstein L, 1996. A model for mechanical seals with regular micro-surface structure. Tribology Transactions, 39(3):677–683. https://doi.org/10.1080/10402009608983582 CrossRefGoogle Scholar
  11. Etsion I, Kligerman Y, Halperin G, 1999. Analytical and experimental investigation of laser-textured mechanical seal faces. Tribology Transactions, 42(3):511–516. https://doi.org/10.1080/10402009908982248 CrossRefGoogle Scholar
  12. Gropper D, Wang L, Harvey TJ, 2016. Hydrodynamic lubrication of textured surfaces: a review of modeling techniques and key findings. Tribology International, 94: 509–529. https://doi.org/10.1016/j.triboint.2015.10.009 CrossRefGoogle Scholar
  13. Luan Z, Khonsari MM, 2009. A thermohydrodynamic analysis of a lubrication film between rough seal faces. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 223(4):665–673. https://doi.org/10.1243/13506501JET456 CrossRefGoogle Scholar
  14. Meng XK, Bai SX, Peng XD, 2014a. An efficient adaptive finite element method algorithm with mass conservation for analysis of liquid face seals. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(3):172–184. https://doi.org/10.1631/jzus.A1300328 CrossRefGoogle Scholar
  15. Meng XK, Bai SX, Peng XD, 2014b. Lubrication film flow control by oriented dimples for liquid lubricated mechanical seals. Tribology International, 77: 132–141. https://doi.org/10.1016/j.triboint.2014.04.020 CrossRefGoogle Scholar
  16. Meng XK, Zhao WJ, Shen MX, et al., 2018. Thermo-hydrodynamic analysis on herringbone-grooved mechanical face seals with a quasi-3D model. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 232(11):1402–1414.  https://doi.org/10.1177/1350650117752952 CrossRefGoogle Scholar
  17. Patir N, Cheng HS, 1978. An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. Journal of Lubrication Technology, 100(1):12–17. https://doi.org/10.1115/1.3453103 CrossRefGoogle Scholar
  18. Patir N, Cheng HS, 1979. Application of average flow model to lubrication between rough sliding surfaces. Journal of Lubrication Technology, 101(2):220–229. https://doi.org/10.1115/1.3453329 CrossRefGoogle Scholar
  19. Payvar P, Salant RF, 1992. A computational method for cavi-tation in a wavy mechanical seal. Journal of Tribology, 114(1):199–204. https://doi.org/10.1115/1.2920861 CrossRefGoogle Scholar
  20. Qiu Y, Khonsari MM, 2011. Performance analysis of full-film textured surfaces with consideration of roughness effects. Journal of Tribology, 133(2): 021704. https://doi.org/10.1115/1.4003303 CrossRefGoogle Scholar
  21. Qiu Y, Khonsari MM, 2012. Thermohydrodynamic analysis of spiral groove mechanical face seal for liquid applications. Journal of Tribology, 134(2): 021703. https://doi.org/10.1115/1.4006063 CrossRefGoogle Scholar
  22. Shen C, Khonsari MM, 2016. Texture shape optimization for seal-like parallel surfaces: theory and experiment. Tri-bology Transactions, 59(4):698–706. https://doi.org/10.1080/10402004.2015.1110220 CrossRefGoogle Scholar
  23. Wu C, Zheng L, 1989. An average Reynolds equation for partial film lubrication with a contact factor. Journal of Tribology, 111(1):188–191. https://doi.org/10.1115/1.3261872 CrossRefGoogle Scholar
  24. Xie Y, Li YJ, Suo SF, et al., 2013. A mass-conservative average flow model based on finite element method for complex textured surfaces. Science China Physics, Mechanics and Astronomy, 56(10):1909–1919. https://doi.org/10.1007/s11433-013-5217-z CrossRefGoogle Scholar
  25. Yang X, Meng XK, Peng XD, et al., 2018. A TEHD lubrication analysis of surface textured mechanical seals. Tri-bology, 38: 204–212 (in Chinese). https://doi.org/10.16078/j.tribology.2018.02.011 Google Scholar
  26. Yu HW, Wang XL, Zhou F, 2010. Geometric shape effects of surface texture on the generation of hydrodynamic pressure between conformal contacting surfaces. Tribology Letters, 37(2):123–130. https://doi.org/10.1007/s11249-009-9497-4 CrossRefGoogle Scholar
  27. Yu XQ, He S, Cai RL, 2002. Frictional characteristics of mechanical seals with a laser-textured seal face. Journal of Materials Processing Technology, 129(1–3):463–466.  https://doi.org/10.1016/S0924-0136(02)00611-8 CrossRefGoogle Scholar
  28. Zhang H, Hua M, Dong GN, et al., 2016. A mixed lubrication model for studying tribological behaviors of surface texturing. Tribology International, 93: 583–592. https://doi.org/10.1016/j.triboint.2015.03.027 CrossRefGoogle Scholar
  29. Zouzoulas V, Papadopoulos CI, 2017. 3-D thermo-hydrodynamic analysis of textured, grooved, pocketed and hydrophobic pivoted-pad thrust bearings. Tribology International, 110: 426–440.  https://doi.org/10.1016/j.triboint.2016.10.001 CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MOE Engineering Research Center of Process Equipment and Its RemanufactureZhejiang University of TechnologyHangzhouChina

Personalised recommendations