Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 20, Issue 9, pp 685–700 | Cite as

Parameters of a discrete element ballasted bed model based on a response surface method

  • Jie-ling Xiao
  • Gan-zhong LiuEmail author
  • Jian-xing Liu
  • Jia-cheng Dai
  • Hao Liu
  • Ping Wang
Article
  • 21 Downloads

Abstract

Discrete element simulation on ballasted beds is an important method to study the service characteristics of ballasted tracks; an effective simulation should be based on proper ballast parameters. Ballast contact parameter, which exhibits a high discreteness affected by factors such as material, shape, and gradation, can effectively be calibrated by an angle of repose test. Based on the testing principles of a multi-parameter response surface method, the Box-Behnken method is adopted to design the angle of repose test under the influence of restitution, static friction, and rolling friction coefficients; laboratory-measured results are combined with the simulation; regression analyzed angle of repose is considered as the goal; parameters optimization and ballasted bed resistance simulations are verified for multiple parameters. The results demonstrate that Chinese special-grade ballasts exhibit an average laboratory-measured angle of repose of (39.78±1.27)°, and the optimal combination of parameters in this discrete element simulation based on the response surface method are as follows: the restitution coefficient is 0.72, the static friction coefficient is 0.56, and the rolling friction coefficient is 0.27. The results of the lateral resistance simulation are in accordance with the laboratory test, indicating that the optimal parameters are usable. The multi-parameter response surface method effectively helps calibrate the parameters of the discrete element simulation on ballasted beds.

Key words

Ballasted track Ballast Discrete element method Parameter Calibration Response surface method 

基于响应面法的碎石道床离散元模型参数研究

概要

目 的

采用响应面方法研究特级道砟休止角的离散元参 数仿真试验,建立多次回归模型并对其进行优 化,以及对道砟接触参数进行优选。通过多参数 的响应面法为碎石道床离散元参数的快速标定 提供有效途径。

创新点

1. 基于响应面法对离散元道砟接触参数进行统计 分析,提出道砟最优参数的回归方程及回归曲 面。2. 以道砟堆积体在多个正交平面的均值为道 砟休止角,构建基于一致线性描述方式的道砟休止角实测试验与离散元仿真试验。3. 提出道砟参 数的动态标定思想。

方 法

1. 通过道砟休止角的室内试验,测量出道砟休止 角度的有效均值。2. 以实测结果为目标,采用响 应面法对道砟离散元仿真参数进行优选。3. 验证 所提方法的可行性和有效性。

结 论

1. 通过采用休止角的4 个正交面取均值的方法对中国特级道砟休止角进行实测所得到的平均值为(39.78±1.27)°。2. 以实测结果为目标,采用响应面方法对特级道砟离散元仿真参数进行优选,由方差分析可得2 个显著的一次项参数(静摩擦系数和滚动摩擦系数)以及多个显著的多次项参数组合;最优参数组合为:泊松比为0.24,密度 为2600 kg/m3,杨氏模量为5.45×1010 Pa,碰撞恢 复系数为0.72,静摩擦系数为0.56,滚动摩擦系 数为0.27。3. 利用特级道砟离散元最优参数建立 了离散元轨排模型,并进行了轨枕横向阻力试 验;仿真结果与室内试验实测阻力曲线趋势基本 一致,表明响应面法获得的接触参数取值可用于 碎石道床相关的离散元仿真。

关键词

有砟轨道 道砟 离散元 参数 标定 响应面法 

CLC number

U213.7 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. Aursudkij B, McDowell GR, Collop AC, 2009. Cyclic loading of railway ballast under triaxial conditions and in a railway test facility. Granular Matter, 11(6):391–401.  https://doi.org/10.1007/sl0035-009-0144-4 CrossRefGoogle Scholar
  2. Bar-Gera H, 2017. The target parameter of adjusted R-squared in fixed-design experiments. The American Statistician, 71(2):112–119.  https://doi.org/10.1080/00031305.2016.1200489 MathSciNetGoogle Scholar
  3. Biabani MM, Indraratna B, Ngo NT, 2016. Modelling of geocell-reinforced subballast subjected to cyclic loading. Geotextiles and Geomembranes, 44(4):489–503.  https://doi.org/10.1016/j.geotexmem.2016.02.001 CrossRefGoogle Scholar
  4. Box GEP, Wilson KB, 1951. On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society: SeriesB (Methodological), 13(1):1–38.  https://doi.org/10.1111/j.2517-6161.1951.tb00067.x MathSciNetzbMATHGoogle Scholar
  5. Chaubey YP, 1993. Resampling-based multiple testing: examples and methods fox p-value adjustment. Technomet-nas, 35(4):450–451.  https://doi.org/10.1080/00401706.1993.10485360 Google Scholar
  6. Chehreghani S, Noaparast M, Rezai B, et al., 2017. Bonded-particle model calibration using response surface methodology. Particuology, 32:141–152.  https://doi.org/10.1016/j.partic.2016.07.012 CrossRefGoogle Scholar
  7. Chen HH, Bian XC, 2018. Discrete element simulation study of contact pressure distribution between sleeper and ballasts. In: Bian XC, Chen YM, Ye XW (Eds.), Environmental Google Scholar
  8. Vibrations and Transportation Geodynamics. Springer, Singapore, p. 189–195.  https://doi.org/10.1007/978-981-10-4508-0_17
  9. Chen R, Chen JY, Wang P, et al., 2017. Numerical investigation on wheel-turnout rail dynamic interaction excited by wheel diameter difference in high-speed railway. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 18(8):660–676.  https://doi.org/10.1631/jzus.A1700134 CrossRefGoogle Scholar
  10. Cheng YP, Bolton MD, Nakata Y, 2005. Grain crushing and critical states observed in DEM simulations. In: Garcia-Rojo R, Herrmann HJ, McNamara S (Eds.), Powders and Grains. Taylor & Francis Group, London, UK, p. 1393–1397.Google Scholar
  11. Cundall PA, 1971a. A computer model for simulating progressive large scale movements in blocky rock systems. Proceedings of the Symposium of the International Society for Rock Mechanics.Google Scholar
  12. Cundall PA, 1971b. The Measurement and Analysis of Accelerations in Rock Slopes. PhD Thesis, University of London, London, UK.Google Scholar
  13. Cundall PA, Strack ODL, 1980. Discussion: a discrete numerical model for granular assemblies. Geotechnique, 30(3):331–336.  https://doi.org/10.1680/geot.1980.30.3.331 CrossRefGoogle Scholar
  14. Diyaljee V, 2013. Discussion of “Stress-strain degradation response of railway ballast stabilized with geosynthetics” by Buddhima Indraratna and Sanjay Nimbalkar. Journal of Geotechnical and Geoenvironmental Engineering, 139(12):684–700.  https://doi.org/10.1061/(ASCE)GT1943-5606.0000994 CrossRefGoogle Scholar
  15. Dong YX, Song ZP, Cui SJ, 2008. Perspectives on the measurement of angle of repose. Journal of China Pharmaceutical University, 39(4):317–320 (in Chinese).  https://doi.org/10.3321/j.issn:1000-5048.2008.04.005 Google Scholar
  16. Esveld C, 2001. Modern Railway Track, 2nd Edition. Delft University of Technology, Delft, The Netherlands.Google Scholar
  17. Ferreira SLC, Brans RE, Ferreira HS, et al., 2007. Box-Behnken design: an alternative for the optimization of analytical methods. Analytica Chimica Acta, 597(2): 179–186.  https://doi.org/10.1016/j.aca.2007.07.011 CrossRefGoogle Scholar
  18. Guo ZG, Chen XL, Liu HF, et al., 2014. Theoretical and experimental investigation on angle of repose of biomass-coal blends. Fuel, 116:131–139.  https://doi.org/10.1016/j.fuel.2013.07.098 CrossRefGoogle Scholar
  19. Hertz H, 1881. On the contact of elastic solids. Journal fur die reine und angewandte Mathematik, 92:156–171.zbMATHGoogle Scholar
  20. Hochberg Y, 1988. A sharper Bonferroni procedure for multiple tests of significance. Biometrika, 75(4): 800–802.  https://doi.org/10.1093/biomet/75.4.800 MathSciNetCrossRefzbMATHGoogle Scholar
  21. Huang H, Tutumluer E, 2014. Image-aided element shape generation method in discrete-element modeling for railroad ballast. Journal ofMaterials in Civil Engineering, 26(3):527–535.  https://doi.org/10.1061/(ASCE)MT1943-5533.0000839 CrossRefGoogle Scholar
  22. Huang H, Tutumluer E, Dombrow W, 2009. Laboratory characterization of fouled railroad ballast behavior. Transportation Research Record: Journal of the Transportation Research Board, 2117(1):93–101.  https://doi.org/10.3141/2117-12 CrossRefGoogle Scholar
  23. Ibragimov R, Miiller UK, 2010. /-statistic based correlation and heterogeneity robust inference. Journal of Business & Economic Statistics, 28(4):453–468.  https://doi.org/10.1198/jbes.2009.08046 MathSciNetCrossRefzbMATHGoogle Scholar
  24. Indraratna B, Salim W, 2005. Mechanics of Ballasted Rail Tracks: a Geotechnical Perspective. Taylor & Francis, London, UK.Google Scholar
  25. Indraratna B, Salim W, Rujikiatkamjorn C, 2011. Advanced Rail Geotechnology-Ballasted Track. CRC Press/Balkema, The Netherlands.CrossRefGoogle Scholar
  26. Indraratna B, Ngo NT, Rujikiatkamjorn C, et al., 2014. Behavior of fresh and fouled railway ballast subjected to direct shear testing: discrete element simulation. International Journal ofGeomechanics, 14(1): 34–44.  https://doi.org/10.1061/(ASCE)GM.1943-5622.0000264 CrossRefGoogle Scholar
  27. Khuri AL, Mukhopadhyay S, 2010. Response surface methodology. Wiley Interdisciplinary Reviews: Computational Statistics, 2(2): 128–149.  https://doi.org/10.1002/wics.73 CrossRefGoogle Scholar
  28. Komar PD, 1978. Angle of repose. In: Sedimentology. Springer, Heidelberg, Germany, p.25–26.  https://doi.org/10.1007/3-540-31079-7_6 Google Scholar
  29. Li YJ, 2005. The Experimental-simulative Study on the Granular Piling Using the Discrete Element Method. MS Thesis, China Agricultural University, Beijing, China (in Chinese).Google Scholar
  30. Liu FY, Zhang J, Li B, et al., 2016. Calibration of parameters of wheat required in discrete element method simulation based on repose angle of particle heap. Transactions of the Chinese Society of Agricultural Engineering, 32(12):247–253 (in Chinese).  https://doi.org/10.11975/j.issn.1002-6819.2016.12.035 Google Scholar
  31. Liu GZ, 2018. Study on Stability of Ballast Beds on Bridges Based on the Discrete Element Method. MS Thesis, Southwest Jiaotong University, Chengdu, China (in Chinese).Google Scholar
  32. Liu JX, Xiao JL, Liu H, et al., 2019. Random generation method of ballast 2D topology based on particle characteristics. Construction and Building Materials, 221:762–771.  https://doi.org/10.1016/jxonbuildmat.2019.06.131 CrossRefGoogle Scholar
  33. Lu M, McDowell GR, 2006. Discrete element modelling of ballast abrasion. Geotechnique, 56(9):651–655.  https://doi.org/10.1680/geot.2006.56.9.651 CrossRefGoogle Scholar
  34. Matuttis HG, Luding S, Herrmann HJ, 2000. Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles. Powder Technology, 109(1-3):278–292.  https://doi.org/10.1016/S0032-5910(99)00243-0 CrossRefGoogle Scholar
  35. McDowell GR, Harireche O, Konietzky H, et al., 2006. Discrete element modelling of geogrid-reinforced aggregates. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 159(1): 35–48.  https://doi.org/10.1680/geng.2006.159.L35 CrossRefGoogle Scholar
  36. Mindlin RD, 1949. Compliance of elastic bodies in contact. Journal of Applied Mechanics, 16:259–268.MathSciNetzbMATHGoogle Scholar
  37. Mindlin RD, Deresiewicz H, 1953. Elastic spheres in contact under varying oblique forces. Journal of Applied Mechanics, 20:327–344.MathSciNetzbMATHGoogle Scholar
  38. MOR (Ministry of Railways of the People’s Republic of China), 2008. Railway ballast, TB/T 2140-2008. National Standards of People’s Republic of China (in Chinese).Google Scholar
  39. Morris AS, Langari R, 2016. Statistical analysis of measurements subject to random errors. In: Morris AS, Langari R (Eds.), Measurement and Instrumentation, 2nd Edition. Academic Press, San Diego, USA, p.75–130.  https://doi.org/10.1016/B978-0-12-800884-3.00004-6 Google Scholar
  40. Ngo NT, Indraratna B, Rujikiatkamjorn C, 2014. DEM simulation of the behaviour of geogrid stabilised ballast fouled with coal. Computers and Geotechnics, 55:224–231.  https://doi.org/10.1016/j.compgeo.2013.09.008 CrossRefGoogle Scholar
  41. Ngo NT, Indraratna B, Rujikiatkamjorn C, 2017. A study of the geogrid-subballast interface via experimental evaluation and discrete element modelling. Granular Matter, 19(3): 54.  https://doi.org/10.1007/sl0035-017-0743-4 CrossRefGoogle Scholar
  42. Ngo NT, Indraratna B, Rujikiatkamjorn C, 2017. Simulation ballasted track behavior: numerical treatment and field application. International Journal of Geomechanics, 17(6):04016130.  https://doi.org/10.1061/(ASCE)GM.1943-5622.0000831 CrossRefGoogle Scholar
  43. Qian Y, Mishra D, Tutumluer E, et al., 2015. Characterization of geogrid reinforced ballast behavior at different levels of degradation through triaxial shear strength test and discrete element modeling. Geotextiles and Geomem-branes, 43(5):393–402.  https://doi.org/10.1016/j.geotexmem.2015.04.012
  44. Rackl M, Grotsch FE, 2018. 3D scans, angles of repose and bulk densities of 108 bulk material heaps. Scientific Data, 5:180102.  https://doi.org/10.1038/sdata.2018.102 CrossRefGoogle Scholar
  45. Roessler T, Katterfeld A, 2018. Scaling of the angle of repose test and its influence on the calibration of DEM parameters using upscaled particles. Powder Technology, 330: 58–66.  https://doi.org/10.1016/j.powtec.2018.01.044 CrossRefGoogle Scholar
  46. Sakaguchi H, Ozaki E, Igarashi T, 1993. Plugging of the flow of granular materials during the discharge from a silo. International Journal of Modern Physics B, 07(09nl0): 1949–1963.  https://doi.org/10.1142/S0217979293002705 CrossRefGoogle Scholar
  47. Shorts DC, Feitosa K, 2018. Experimental measurement of the angle of repose of a pile of soft frictionless grains. Granular Matter, 20(1):2.  https://doi.org/10.1007/sl0035-017-0774-x CrossRefGoogle Scholar
  48. Tsuji Y, Tanaka T, Ishida T, 1992. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technology, 71(3):239–250.  https://doi.org/10.1016/0032-5910(92)88030-L CrossRefGoogle Scholar
  49. Tutumluer E, Huang H, Bian XC, 2012. Geogrid-aggregate interlock mechanism investigated through aggregate imaging-based discrete element modeling approach. International Journal of Geomechanics, 12(4):391–398.  https://doi.org/10.1061/(ASCE)GM.1943-5622.0000113 CrossRefGoogle Scholar
  50. Wang Y, Yang JH, 2001. Study on rock mass structure and mechanic property of basalt. Chinese Journal of Rock Mechanics and Engineering, 21(9): 1307–1310 (in Chinese).  https://doi.org/10.3321/j.issn:1000-6915.2002.09.005 Google Scholar
  51. Wu AX, Sun YZ, Liu XP, 2002. Granular Dynamic Theory and Its Applications. Metallurgical Industry Press, Beijing, China (in Chinese).Google Scholar
  52. Xiao JL, Liu H, Xu JM, et al., 2017. Longitudinal resistance performance of granular ballast beds under cyclic symmetric displacement loading. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 18(8):648–659.  https://doi.org/10.1631/jzus.A1700058 CrossRefGoogle Scholar
  53. Xiao JL, Liu H, Wang P, et al., 2018. Evolution of longitudinal resistance performance of granular ballast track with durable dynamic reciprocated changes. Advances in Materials Science and Engineering, 2018:3189434.  https://doi.org/10.1155/2018/3189434 Google Scholar
  54. Xu Y, Gao L, Wang H, et al., 2016. Study of fractal method and influence of ballast gradation on ballast bed shear behavior. Journal of the China Railway Society, 38(12):94–101 (in Chinese).  https://doi.org/10.3969/j.issn.1001-8360.2016.12.014 Google Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MOE Key Laboratory of High-speed Railway EngineeringSouthwest Jiaotong UniversityChengduChina
  2. 2.School of Civil EngineeringSouthwest Jiaotong UniversityChengduChina
  3. 3.Railway Engineering Research InstituteChina Academy of Railway Sciences Group Co., Ltd.BeijingChina

Personalised recommendations