Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 20, Issue 9, pp 701–713 | Cite as

Characteristics of mixing enhancement achieved using a pulsed plasma synthetic jet in a supersonic flow

  • Peng Wang
  • Chi-bing ShenEmail author
Article
  • 14 Downloads

Abstract

Supersonic mixing layers exist extensively in supersonic engineering applications. The rapid mixing of fuel and oxidant at short distances is of great importance, but makes it difficult to develop efficient propulsion systems. The plasma synthetic jet (PSJ) is regarded as a promising high-speed flow control technique. The characteristics of mixing enhancement achieved using a pulsed PSJ were investigated via experiments. Results showed that the PSJ is an effective method for mixing enhancement. Nanoparticle-based planar laser scattering (NPLS) was used to obtain flow structures in three directions. The velocity fields near the PSJ actuator orifice were measured by particle image velocimetry (PIV). Indexes of the fractal dimension and mixing layer thickness were applied to estimate the effect of the PSJ actuator on the supersonic mixing layers. The large-scale vortex structures induced by the pulsed PSJ in the supersonic mixing layers were successfully captured by NPLS. The effect of the PSJ on the supersonic mixing layers was remarkable. The mixing layer thickness under perturbation was larger than that under no perturbation in the downstream. The distribution of the fractal dimension suggests that perturbation of the PSJ cannot improve the fractal dimension values of the fully developed supersonic mixing layers.

Keywords

Supersonic shear layers Supersonic mixing layers Plasma synthetic jet (PSJ) Mixing enhancement 

等离子体合成射流扰动在超声速流场中不同位置的截面特性以及涡结构演化

概要

目 的

燃料和氧化剂的快速掺混是发展超燃冲压发动机 的关键技术。本文使用等离子体合成射流对超声 速混合层进行增强混合,采用实验的方法获得等 离子体合成射流扰动后超声速混合层的精细结 构,并研究在超声速混合层中等离子体合成射流 增强混合的特性。

创新点

1. 使用纳米平面激光散射技术(NPLS)获取在超 声速混合层中由等离子体合成射流诱导的大尺 度涡结构;2. 分析由等离子体合成射流诱导的大 尺度涡结构的演化过程。

方 法

1. 使用信号源发生器实现纳米平面激光散射/粒子 图像测速(NPLS/PIV)和脉冲电源的时序控制, 从而实现NPLS 对等离子体合成射流诱导的大尺 度涡结构的捕捉,以及得到PIV 获取流场的速度 分布;2. 获得不同位置截面和不同延时时刻的流 场精细结构,并分析等离子体合成射流增强混合 的特性;3. 对NPLS 结果提取湍流边界,计算湍 流的混合层的厚度和分形维数。

结 论

1. 等离子体合成射流可以对超声速混合层产生较 大的扰动,展向方向扰动范围超过8D;2. 等离 子体合成射流可以增加混合层的厚度;3. 等离子 体合成射流的扰动无法进一步提高充分发展的 超声速混合层的分形维数。

关键词

超声速剪切层 超声速混合层 等离子体合成射流 混合增强 

CLC number

V23 V43 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. Adelgren RG, Elliott GS, Crawford JB, et al, 2005. Ax-isymmetric jet shear-layer excitation induced by laser energy and electric arc discharges. AIAA Journal, 43(43): p.776–791.  https://doi.org/10.2514/L8548 CrossRefGoogle Scholar
  2. Anderson KV, Knight DD, 2012. Plasma jet for flight control. ALU Journal, 50(50):p.1855–1872.  https://doi.org/10.2514/U051309 Google Scholar
  3. Benard N, Bonnet JP, Touchard G, et al., 2008. Flow control by dielectric barrier discharge actuators: jet mixing enhancement. AIAA Journal, 46(46):p.2293–2305.  https://doi.org/10.2514/L35404 CrossRefGoogle Scholar
  4. Bogdanoff DW, 1983. Compressibility effects in turbulent shear layers. AIAA Journal, 21(21):p.926–927.  https://doi.org/10.2514/3.60135 CrossRefGoogle Scholar
  5. Chedevergne F, Leon O, Bodoc V, et al., 2015. Experimental and numerical response of a high-Reynolds-number M=0.6 jet to a Plasma Synthetic Jet actuator. International Journal of Heat and Fluid Flow, 56:p.1–15.  https://doi.org/10.1016/j.ijheatfluidflow.2015.06.008 CrossRefGoogle Scholar
  6. Collin E, Barre S, Bonnet JP, 2004. Experimental study of a supersonic jet-mixing layer interaction. Physics of Fluids, 16(16):p.765–778.  https://doi.org/10.1063/L1644574 CrossRefzbMATHGoogle Scholar
  7. Davis SA, Glezer A, 1999. Mixing control of fuel jets using synthetic jet technology: velocity field measurements. Proceedings of the 37th Aerospace Sciences Meeting & Exhibi.  https://doi.org/10.2514/6.1999-447 Google Scholar
  8. Dietiker JF, Hoffmann KA, 2007. Numerical investigation of turbulent shear layers in jet exhaust flows. Proceedings of the 37th AIAA Fluid Dynamics Conference and Exhibit, p.1–25.  https://doi.org/10.2514/6.2007-3856 Google Scholar
  9. Dimotakis PE, 1991. Turbulent free shear layer mixing and combustion. In: Curran ET, Murthy SNB (Eds.), High-speed Flight Propulsion Systems. American Institute of Aeronautics and Astronautics, Washington DC, USA, p.265–340.  https://doi.org/10.2514/5.9781600866104.0265.0340 Google Scholar
  10. Falconer KJ, 2003. Fractal Geometry: Mathematical Foundations and Applications, 2nd Edition. John Wiley & Sons Ltd., Chichester, UK, p.41–57.Google Scholar
  11. Feng JH, Shen CB, Wang QC, et al, 2015. Experimental and numerical study of mixing characteristics of a rectangular lobed mixer in supersonic flow. The Aeronautical Journal, 119(119):p.701–725.  https://doi.org/10.1017/S0001924000010782 CrossRefGoogle Scholar
  12. Fernando EM, Menon S, 1993. Mixing enhancement in compressible mixing layers: an experimental study. AIAA Journal, 31(31):p.278–285.  https://doi.org/10.2514/3.11665 CrossRefGoogle Scholar
  13. Freeman AP, Catrakis HJ, 2009. Active control of mixing in turbulent separated shear layers and effects of forcing on the fractal geometry of scalar interfaces. Journal of Turbulence, 10:N3.  https://doi.org/10.1080/14685240903338080 Google Scholar
  14. Gonzalez RC, Woods WR, 2010. Digital Image Processing, 3rd Edition. Ruan QQ, Ruan YZ (translators), 2011. Publishing House of Electronics Industry, Beijing, China, p.463–467.Google Scholar
  15. Grossman KR, Cybyk BZ, VanWie DM, 2003. Sparkjet actuators for flow control. Proceedings of the 41st Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, AIAA Paper 2003–205.  https://doi.org/10.2514/6.2003-57 Google Scholar
  16. Grossman KR, Cybyk BZ, Rigling MC, et al., 2004. Characterization of sparkjet actuators for flow control. Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, AIAA Paper 2004–208.  https://doi.org/10.2514/6.2004-89 Google Scholar
  17. Guirguis RH, Grinstein FF, Young TR, et al., 1987. Mixing enhancement in supersonic shear layers. Proceedings of the 25th AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, AIAA Paper 87-037.  https://doi.org/10.2514/6.1987-373 Google Scholar
  18. Gutmark EJ, Schadow KC, Yu KH, 1995. Mixing enhancement in supersonic free shear flows. Annual Review of Fluid Mechanics, 27:p.375–417.  https://doi.org/10.1146/annurev.fl.27.010195.002111 CrossRefGoogle Scholar
  19. Haack SJ, Taylor TM, Cybyk BZ, et al., 2011. Experimental estimation of sparkjet efficiency. Proceedings of the 42nd AIAA Plasmadynamics and Lasers Conference, AIAA Paper 2011-399.  https://doi.org/10.2514/6.2011-3997 Google Scholar
  20. Haimovitch Y, Gartenberg E, Roberts Jr AS, et al., 1994. An investigation of wall injectors for supersonic mixing enhancement. Proceedings of the 30th Joint Propulsion Conference and Exhibit, American Institute of Aeronautics and Astronautics, AIAA Paper 94-294.  https://doi.org/10.2514/6.1994-2940 Google Scholar
  21. Hardy P, Barricau P, Belinger A, et al.,2010. Plasma synthetic jet for flow control. Proceedings of the 40th Fluid Dynamics Conference and Exhibit, American Institute of Aeronautics and Astronautics, AIAA Paper 2010-510.  https://doi.org/10.2514/6.2010-5103 Google Scholar
  22. Huet M, 2014. On the use of plasma synthetic jets for the control of jet flow and noise. Proceedings of the 20th AIAA/CEAS Aeroacoustics Conference, American Institute of Aeronautics and Astronautics, AIAA Paper 2014-262.  https://doi.org/10.2514/6.2014-2620 Google Scholar
  23. Kharitonov AM, Lokotko AV, Tchernyshyev AV, et al., 2000. Mixing processes of supersonic flows in a model duct of a rocket scramjet engine. Proceedings of the 38th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, AIAA Paper 2000-055.  https://doi.org/10.2514/6.2000-559 Google Scholar
  24. Lazar E, Elliott G, Glumac N, 2008. Control of the shear layer above a supersonic cavity using energy deposition. AIAA Journal, 46(46):p.2987–2997.  https://doi.org/10.2514/L32835 CrossRefGoogle Scholar
  25. Liao L, Yan L, Huang W, etal., 2018. Mode transition process in a typical strut-based scramjet combustor based on a parametric study. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 19(19): p.431–451.  https://doi.org/10.1631/jzus.A1700617 CrossRefGoogle Scholar
  26. Lui C, Lele SK, 2001. Direct numerical simulation of spatially developing, compressible, turbulent mixing layers. Proceedings of the 39th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, AIAA Paper 2001-029.  https://doi.org/10.2514/6.2001-291 Google Scholar
  27. Martens S, McLaughlin DK, 1995. Mixing enhancement using Mach wave interaction in a confined supersonic shear layer. Proceedings of the Fluid Dynamics, American Institute of Aeronautics and Astronautics, AIAA Paper 95-217.  https://doi.org/10.2514/6.1995-2177 Google Scholar
  28. McCormick DC, Bennett Jr JC, 1994. Vortical and turbulent structure of a lobed mixer free shear layer. AIAA Journal, 32(32): p.1852–1859.  https://doi.org/10.2514/3.12183 CrossRefGoogle Scholar
  29. Narayanaswamy V, Shin J, Clemens NT, et al., 2008. Investigation of plasma-generated jets for supersonic flow control. Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, American Institute of Aero-nautics and Astronautics, AIAA Paper 2008-28.  https://doi.org/10.2514/6.2008-285 Google Scholar
  30. Narayanaswamy V, Raja LL, Clemens NT, 2012. Control of a shock/boundary-layer interaction by using a pulsed-plasma jet actuator. AIAA Journal, 50(1):p.246–249.  https://doi.org/10.2514/LJ051246 CrossRefGoogle Scholar
  31. Papamoschou D, 1989. Structure of the compressible turbulent shear layer. Proceedings of the 27th Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, AIAA-89-012.  https://doi.org/10.2514/6.1989-126 Google Scholar
  32. Santhanakrishnan A, Jacob JD, 2007. Flow control with plasma synthetic jet actuators. Journal of Physics D: Applied Physics, 40(40):p.637–651.  https://doi.org/10.1088/0022-3727/40/3/S02 CrossRefGoogle Scholar
  33. Seiner JM, Dash SM, Kenzakowski DC, 2001. Historical survey on enhanced mixing in scramjet engines. Journal of Propulsion and Power, 17(17): p.1273–1286.  https://doi.org/10.2514/2.5876 CrossRefGoogle Scholar
  34. Sreenivasan KR, 1991. Fractals and multifractals in fluid turbulence. Annual Review of Fluid Mechanics, 23: p.539–604.  https://doi.org/10.1146/annurev.fl.23.01019L002543 MathSciNetCrossRefGoogle Scholar
  35. Tamburello DA, Amitay M, 2008. Active control of a free jet using a synthetic jet. International Journal of Heat and Fluid Flow, 29(29):p.967–984.  https://doi.org/10.1016/j.ijheatfluidflow.2008.02.017 CrossRefGoogle Scholar
  36. Wang L, Xia ZX, Luo ZB, et al., 2014a. Experimental study on the characteristics of a two-electrode plasma synthetic jet actuator. Acta Physica Sinica, 63(19): 194702 (in Chinese.  https://doi.org/10.7498/aps.63.194702 Google Scholar
  37. Wang L, Xia ZX, Luo ZB, et al, 2014b. Three-electrode plasma synthetic jet actuator for high-speed flow control. AIAA Journal, 52(52): p.879–882.  https://doi.org/10.2514/LJ052686 CrossRefGoogle Scholar
  38. Wang P, Shen C, 2019. Mixing enhancement for supersonic mixing layer by using plasma synthetic jet. Acta Physica Sinica, 68(68): 174701 (in Chinese.  https://doi.org/10.7498/aps.68.20190683 Google Scholar
  39. Wang QC, Wang ZG, Jing L, et al., 2013. Characteristics of mixing enhanced by streamwise vortices in supersonic flow. Applied Physics Letters, 103(103): 14410.  https://doi.org/10.1063/L4823699 Google Scholar
  40. Watanabe S, Mungal MG, 2005. Velocity fields in mixing-enhanced compressible shear layers. Journal of Fluid Mechanics, 522:p.141–177.  https://doi.org/10.1017/S0022112004001727 CrossRefzbMATHGoogle Scholar
  41. Zang A, Tempel T, Yu K, et al., 2005. Experimental characterization of cavity-augmented supersonic mixing. Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, AIAA Paper 2005-142.  https://doi.org/10.2514/6.2005-1423 Google Scholar
  42. Zhang CX, Liu Y, Fu BS, et al, 2018. Direct numerical simulation of subsonic-supersonic mixing layer. Acta Astronautica, 153:p.50–59.  https://doi.org/10.1016/j.actaastro.2018.10.004 CrossRefGoogle Scholar
  43. Zhang DD, Tan JG, Lv L, 2015. Investigation on flow and mixing characteristics of supersonic mixing layer induced by forced vibration of cantilever. Acta Astronautica, 117:p.440–449.  https://doi.org/10.1016/j.actaastro.2015.09.001 CrossRefGoogle Scholar
  44. Zhao YX, 2008. Experimental Investigation of Spatiotemporal Structures of Supersonic Mixing Layer. PhD Thesis, National University of Defense Technology, Changsha, China (in Chinese).Google Scholar
  45. Zhao YX, Yi SH, Tian LF, et al., 2008. The fractal measurement of experimental images of supersonic turbulent mixing layer. Science in China Series G: Physics, Mechanics and Astronomy, 51(51): p.1134–1143.  https://doi.org/10.1007/sll433-008-0097-3 CrossRefGoogle Scholar
  46. Zhou Y, Xia ZX, Luo ZB, et al., 2017. A novel ram-air plasma synthetic jet actuator for near space high-speed flow control. Acta Astronautica, 133:p.95–102.  https://doi.org/10.1016/j.actaastro.2017.01.016 CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Science and Technology on Scramjet Laboratory, College of Aerospace Science and EngineeringNational University of Defense TechnologyChangshaChina

Personalised recommendations