Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 20, Issue 4, pp 300–304 | Cite as

Modified residue harmonic balance solution for coupled integrable dispersionless equations with disturbance terms

  • Yiu-yin LeeEmail author
Correspondence
  • 3 Downloads

中文概要

题目

一种针对有扰动项的耦合可积非色散方程的修正残差谐波平衡求解方法

目的

本文将改进残余谐波平衡方法用于求解有扰动项的耦合可积非色散方程,并简化取得破解方案的过程。

创新点

1. 在取得每一阶段破解方案的过程中, 只需处理一条非线性代数方程式及一组线性代数方程式;2. 能找出旧方法不能找出的非线性答案。

方法

1. 使用理论推导、方程式替换及残余谐波平衡方法;2. 通过仿真模拟,推导震动位移与频率之间的关系(图1)以及位移与速度之间的关系(图2)。

结论

1. 成功将改进残余谐波平衡方法应用于有扰动项的耦合可积非色散方程;2. 通过与其他方法产生的数据进行比较,验证了所提方法的可行性和有效性(表1–3)。

关键词

大幅自主震动 残余谐波平衡 有扰动项的耦合可积非色散方程 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. Guner O, Bekir A, 2018. Solving nonlinear space-time fractional differential equations via ansatz method. Computational Methods for Differential Equations, 6(1):1–11.MathSciNetzbMATHGoogle Scholar
  2. Hasan ASMZ, Lee YY, Leung AYT, 2016. The multi-level residue harmonic balance solutions of multi-mode non-linearly vibrating beams on an elastic foundation. Journal of Vibration and Control, 22(14):3218–3235. https://doi.org/10.1177/1077546314562225 MathSciNetGoogle Scholar
  3. Hashemi MS, Akgul A, 2018. Solitary wave solutions of time-space nonlinear fractional Schrödinger’s equation: two analytical approaches. Journal of Computational and Applied Mathematics, 339:147–160. https://doi.org/10.1016/j.cam.2017.11.013 MathSciNetzbMATHGoogle Scholar
  4. Hu YF, Wang B, 2008. Solution of two-dimensional scattering problem in piezoelectric/piezomagnetic media using a polarization method. Applied Mathematics and Mechanics-English Edition, 29(12):1535–1552. https://doi.org/10.1007/s10483-008-1202-x MathSciNetzbMATHGoogle Scholar
  5. Huang JB, Xiao ZX, Liu J, et al., 2012. Simulation of shock wave buffet and its suppression on an OAT15A supercritical airfoil by IDDES. Science China Physics, Mechanics and Astronomy, 55(2):260–271. https://doi.org/10.1007/s11433-011-4601-9 Google Scholar
  6. Huang JL, Zhu WD, 2017. An incremental harmonic balance method with two timescales for quasiperiodic motion of nonlinear systems whose spectrum contains uniformly spaced sideband frequencies. Nonlinear Dynamics, 90(2): 1015–1033. https://doi.org/10.1007/s11071-017-3708-6 Google Scholar
  7. Huang JL, Chen SH, Su RKL, et al., 2011. Nonlinear analysis of forced responses of an axially moving beam by incremental harmonic balance method. Mechanics of Advanced Materials and Structures, 18(8):611–616. https://doi.org/10.1080/15376494.2011.621845 Google Scholar
  8. Huang JL, Su KLR, Lee YYR, et al., 2018. Various bifurcation phenomena in a nonlinear curved beam subjected to base harmonic excitation. International Journal of Bifurcation and Chaos, 28(7):1830023. https://doi.org/10.1142/S0218127418300239 MathSciNetzbMATHGoogle Scholar
  9. Lee YY, 2002. Structural-acoustic coupling effect on the nonlinear natural frequency of a rectangular box with one flexible plate. Applied Acoustics, 63(11):1157–1175. https://doi.org/10.1016/S0003-682X(02)00033-6 Google Scholar
  10. Lee YY, 2017. Large amplitude free vibration of a flexible panel coupled with a leaking cavity. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 18(1):75–82. https://doi.org/10.1631/jzus.A1600145 Google Scholar
  11. Lee YY, 2018. Nonlinear structure-extended cavity interaction simulation using a new version of harmonic balance method. PLoS One, 13(7):e0199159. https://doi.org/10.1371/journal.pone.0199159 Google Scholar
  12. Leung AYT, Yang HX, Guo ZJ, 2012. Periodic wave solutions of coupled integrable dispersionless equations by residue harmonic balance. Communications in Nonlinear Science and Numerical Simulation, 17(11):4508–4514. https://doi.org/10.1016/j.cnsns.2012.03.005 MathSciNetzbMATHGoogle Scholar
  13. Li W, Yang Y, Sheng DR, et al., 2011. Nonlinear dynamic analysis of a rotor/bearing/seal system. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 12(1):46–55. https://doi.org/10.1631/jzus.A1000130 zbMATHGoogle Scholar
  14. Lu QQ, Shao W, Wu YF, et al., 2018. Vibration analysis of an axially moving plate based on sound time-frequency analysis. International Journal of Acoustics and Vibration, 23(2):226–233. https://doi.org/10.20855/ijav.2018.23.21429 Google Scholar
  15. Mohammadian M, Shariati M, 2017. Approximate analytical solutions to a conservative oscillator using global residue harmonic balance method. Chinese Journal of Physics, 55(1):47–58. https://doi.org/10.1016/j.cjph.2016.11.007 MathSciNetGoogle Scholar
  16. Qian YH, Pan JL, Chen SP, et al., 2017. The spreading residue harmonic balance method for strongly nonlinear vibrations of a restrained cantilever beam. Advances in Mathematical Physics, 2017:5214616. https://doi.org/10.1155/2017/5214616
  17. Rahman MS, Lee YY, 2017. New modified multi-level residue harmonic balance method for solving nonlinearly vibrating double-beam problem. Journal of Sound and Vibration, 406:295–327. https://doi.org/10.1016/j.jsv.2017.06.017 Google Scholar
  18. Tasbozan O, Şenol M, Kurt A, et al., 2018. New solutions of fractional Drinfeld-Sokolov-Wilson system in shallow water waves. Ocean Engineering, 161:62–68. https://doi.org/10.1016/j.oceaneng.2018.04.075 Google Scholar
  19. Wang B, Guo JF, Feng JG, et al., 2016. Nonlinear dynamics and coupling effect of libration and vibration of tethered space robot in deorbiting process. Journal of Central South University, 23(5):1095–1105. https://doi.org/10.1007/s11771-016-0359-6 Google Scholar
  20. Yin XL, Ma J, Wang XG, et al., 2012. Spin squeezing under non-Markovian channels by the hierarchy equation method. Physical Review A, 86(1):012308. https://doi.org/10.1103/PhysRevA.86.012308 Google Scholar
  21. Zhang CL, Wang XY, Chen WQ, et al., 2016. Propagation of extensional waves in a piezoelectric semiconductor rod. AIP Advances, 6(4):045301. https://doi.org/10.1063/1.4945752 Google Scholar
  22. Zheng XH, Zhang BF, Jiao ZX, et al., 2016. Tunable, continuous-wave single-resonant optical parametric oscillator with output coupling for resonant wave. Chinese Physics B, 25(1):014208. https://doi.org/10.1088/1674-1056/25/1/014208 Google Scholar
  23. Zhong W, Ma J, Liu J, et al., 2014. Derivation of quantum Chernoff metric with perturbation expansion method. Chinese Physics B, 23(9):090305. https://doi.org/10.1088/1674-1056/23/9/090305 Google Scholar
  24. Zhou WJ, Wei XS, Wei XZ, et al., 2014. Numerical analysis of a nonlinear double disc rotor-seal system. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(1):39–52. https://doi.org/10.1631/jzus.A1300230 MathSciNetGoogle Scholar
  25. Zhu ZQ, Jin XL, Hu SD, et al., 2013. The approximate response of real order nonlinear oscillator using Homotopy analysis method. Advances in Vibration Engineering, 12(2):123–134.Google Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Architecture and Civil EngineeringCity University of Hong KongHong KongChina

Personalised recommendations