Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 20, Issue 7, pp 533–545 | Cite as

Microbial dynamics and performance in a microbial electrolysis cell-anaerobic membrane bioreactor

  • Shu-wen Du
  • Chao Sun
  • A-qiang Ding
  • Wei-wang Chen
  • Ming-jie Zhang
  • Ran Cheng
  • Dong-lei WuEmail author
Article
  • 9 Downloads

Abstract

Membrane fouling restricts the wide application of anaerobic membrane bio-reactors (AnMBRs). In this study, a microbial electrolytic cell (MEC)-AnMBR biosystem was constructed to relieve membrane fouling. Total chemical oxygen demand (COD) removal efficiency and methane production in MEC-AnMBR were increased to 6.7% and 77.1%, respectively, in comparison to AnMBR. The membrane fouling of MEC-AnMBR was greatly lessened by the slower growth of extracellular polymeric substances (EPS) and soluble microbial products (SMP). High-throughput sequencing analysis showed that Synergistaceae-uncultured and Thermovirga were enriched in MEC-AnMBR, and Thermovirga was found as the key functional microorganism. These results indicated that MEC-AnMBR could simultaneously enhance the reactor efficiency and mitigate membrane fouling.

Key words

Microbial electrolytic cell-anaerobic membrane bio-reactor (MEC-AnMBR) Chemical oxygen demand (COD) removal efficiency Methane production Membrane fouling Microbial mechanism 

微生物电解池耦合厌氧膜生物反应器运行性能及微生物学机理研究

中文概要

目的:将微生物电解池(MEC)与厌氧膜生物反应器 (AnMBR)耦合,构建MEC-AnMBR 系统,以 期同步实现污水高效处理和膜污染缓解,推动膜 生物反应器的理论创新和技术创新。

创新点:1. 将MEC 与AnMBR 耦合,构建MEC-AnMBR 系统用于高浓度有机废水的处理;2. 研究反应器 运行和微生物群落之间的关系;3. 探究膜污染运 行周期中各膜污染阶段微生物代谢产物与自身 代谢活性的变化规律。

方法:1. 启动和运行MEC-AnMBR 反应器,并与传统 AnMBR 对照,综合考察MEC-AnMBR 反应器的 运行性能; 2. 利用高通量测序技术对传统 AnMBR 和MEC-AnMBR 各膜污染阶段的阴极膜 表面微生物群落结构及多样性进行研究,并综合 分析MEC-AnMBR 反应器的运行特性与微生物 群落间的相互关系;3. 对MEC-AnMBR 反应器阴 极膜组件及微生物分泌物进行原位观察,并研究 其在膜污染运行周期中各膜污染阶段微生物代 谢产物与自身代谢活性的变化规律。

结论:1. 成功构建微生物电解池MEC-AnMBR 生物系 统;2. 与AnMBR 相比,MEC-AnMBR 中的化学 需氧量(COD)去除效率和甲烷产量分别增加 6.7%和77.1%;3. 与AnMBR 相比,MEC-AnMBR 的膜污染因细胞外聚合物和可溶性微生物产物 增长缓慢而大大减少;4. 高通量测序分析表明 MEC-AnMBR 富含互养菌属(Synergistaceaeuncultured) 和互营热菌属(Thermovirga),而 Thermovirga 是关键的功能性微生物;5. 这些结 果表明MEC-AnMBR 可同时提高反应器效率并 减轻膜污染。

关键词

微生物电解池 COD 去除效率 甲烷产量 膜污染 微生物特性 

CLC number

X703.1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akamatsu, K, Lu, W, Sugawara, T, et al., 2010. Development of a novel fouling suppression system in membrane bioreactors using an intermittent electric field. Water Research, 44(3):825–830.  https://doi.org/10.1016/j.watres.2009.10.026 CrossRefGoogle Scholar
  2. Aslam, M, Yang, PX, Lee, PH, et al., 2018. Novel staged anaerobic fluidized bed ceramic membrane bioreactor: energy reduction, fouling control and microbial characterization. Journal of Membrane Science, 553:200–208.  https://doi.org/10.1016/j.memsci.2018.02.038 CrossRefGoogle Scholar
  3. Baek, SH, Pagilla, KR, 2006. Aerobic and anaerobic membrane bioreactors for municipal wastewater treatment. Water Environment Research, 78(2):133–140.  https://doi.org/10.2175/106143005X89599 CrossRefGoogle Scholar
  4. Bagheri, M, Mirbagheri, SA, 2018. Critical review of fouling mitigation strategies in membrane bioreactors treating water and wastewater. Bioresource Technology, 258: 318–334.  https://doi.org/10.1016/j.biortech.2018.03.026
  5. Chen, JY, Li, N, Zhao, L, 2014. Three-dimensional electrode microbial fuel cell for hydrogen peroxide synthesis coupled to wastewater treatment. Journal of Power Sources, 254:316–322.  https://doi.org/10.1016/j.jpowsour.2013.12.114 CrossRefGoogle Scholar
  6. Cheng, SA, Xing, DF, Call, DF, et al., 2009. Direct biological conversion of electrical current into methane by electromethanogenesis. Environmental Science & Technology, 43(10):3953–3958.  https://doi.org/10.1021/es803531g CrossRefGoogle Scholar
  7. Clauwaert, P, Verstraete, W, 2009. Methanogenesis in membraneless microbial electrolysis cells. Applied Microbiology and Biotechnology, 82(5):829–836.  https://doi.org/10.1007/s00253-008-1796-4 CrossRefGoogle Scholar
  8. Cusick, RD, Bryan, B, Parker, DS, et al., 2011. Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Applied Microbiology and Biotechnology, 89(6):2053–2063.  https://doi.org/10.1007/s00253-011-3130-9 CrossRefGoogle Scholar
  9. Dahle, H, Birkeland, NK, 2006. Thermovirga lienii gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well. International Journal of Systematic and Evolutionary Microbiology, 56(7):1539–1545.  https://doi.org/10.1099/ijs.0.63894-0 CrossRefGoogle Scholar
  10. Dhar, BR, Gao, YH, Yeo, H, et al., 2013. Separation of competitive microorganisms using anaerobic membrane bioreactors as pretreatment to microbial electrochemical cells. Bioresource Technology, 148:208–214.  https://doi.org/10.1016/j.biortech.2013.08.138 CrossRefGoogle Scholar
  11. Ding, AQ, Yang, Y, Sun, GD, et al., 2016. Impact of applied voltage on methane generation and microbial activities in an anaerobic microbial electrolysis cell (MEC). Chemical Engineering Journal, 283:260–265.  https://doi.org/10.1016/j.cej.2015.07.054 CrossRefGoogle Scholar
  12. Ding, AQ, Fan, Q, Cheng, R, et al., 2018. Impacts of applied voltage on microbial electrolysis cell-anaerobic membrane bioreactor (MEC-AnMBR) and its membrane fouling mitigation mechanism. Chemical Engineering Journal, 333:630–635.  https://doi.org/10.1016/j.cej.2017.09.190 CrossRefGoogle Scholar
  13. Fu, L, You, SJ, Yang, FL, et al., 2010. Synthesis of hydrogen peroxide in microbial fuel cell. Journal of Chemical Technology & Biotechnology, 85(5):715–719.  https://doi.org/10.1002/jctb.2367 CrossRefGoogle Scholar
  14. Gao, MC, Yang, M, Li, HY, et al., 2004. Nitrification and sludge characteristics in a submerged membrane bioreactor on synthetic inorganic wastewater. Desalination, 170(2): 177–185.  https://doi.org/10.1016/j.desal.2004.02.099
  15. Gao, WJ, Lin, HJ, Leung, KT, et al., 2011. Structure of cake layer in a submerged anaerobic membrane bioreactor. Journal of Membrane Science, 374(1–2):110–120.  https://doi.org/10.1016/j.memsci.2011.03.019 CrossRefGoogle Scholar
  16. Ho, J, Sung, S, 2010. Methanogenic activities in anaerobic membrane bioreactors (AnMBR) treating synthetic municipal wastewater. Bioresource Technology, 101(7): 2191–2196.  https://doi.org/10.1016/j.biortech.2009.11.042 CrossRefGoogle Scholar
  17. Katuri, KP, Werner, CM, Jimenez- Sandoval, RJ, et al., 2014. A novel anaerobic electrochemical membrane bioreactor (AnEMBR) with conductive hollow-fiber membrane for treatment of low-organic strength solutions. Environmental Science & Technology, 48(21):12833–12841.  https://doi.org/10.1021/es504392n CrossRefGoogle Scholar
  18. Le-Clech, P, Chen, V, Fane TAG, 2006. Fouling in membrane bioreactors used in wastewater treatment. Journal of Membrane Science, 284(1–2):17–53.  https://doi.org/10.1016/j.memsci.2006.08.019 CrossRefGoogle Scholar
  19. Lee, Y, Cho, J, Seo, Y, et al., 2002. Modeling of submerged membrane bioreactor process for wastewater treatment. Desalination, 146(1–3):451–457.  https://doi.org/10.1016/S0011-9164(02)00543-X CrossRefGoogle Scholar
  20. Li, HN, He, WH, Qu, YP, et al., 2017. Pilot-scale benthic microbial electrochemical system (BMES) for the bioremediation of polluted river sediment. Journal of Power Sources, 356:430–437.  https://doi.org/10.1016/j.jpowsour.2017.03.066 CrossRefGoogle Scholar
  21. Li, J, Ge, Z, He, Z, 2014. Advancing membrane bioelectrochemical reactor (MBER) with hollow-fiber membranes installed in the cathode compartment. Journal of Chemical Technology & Biotechnology, 89(9):1330–1336.  https://doi.org/10.1002/jctb.4206 CrossRefGoogle Scholar
  22. Liu, JD, Xiong, JX, Tian, C, et al., 2018. The degradation of methyl orange and membrane fouling behavior in anaerobic baffled membrane bioreactor. Chemical Engineering Journal, 338:719–725.  https://doi.org/10.1016/j.cej.2018.01.052 CrossRefGoogle Scholar
  23. Nagaoka, H, Ueda, S, Miya, A, 1996. Influence of bacterial extracellular polymers on the membrane separation activated sludge process. Water Science and Technology, 34(9):165–172.  https://doi.org/10.1016/S0273-1223(96)00800-1 CrossRefGoogle Scholar
  24. Nguyen, VK, Hong, S, Park, Y, et al., 2015. Autotrophic denitrification performance and bacterial community at biocathodes of bioelectrochemical systems with either abiotic or biotic anodes. Journal of Bioscience and Bioengineering, 119(2):180–187.  https://doi.org/10.1016/j.jbiosc.2014.06.016 CrossRefGoogle Scholar
  25. Porras-Saavedra, J, Alamilla-Beltrán, L, Lartundo-Rojas, L, et al., 2018. Chemical components distribution and morphology of microcapsules of paprika oleoresin by microscopy and spectroscopy. Food Hydrocolloids, 81: 6–14.  https://doi.org/10.1016/j.foodhyd.2018.02.005 CrossRefGoogle Scholar
  26. Quast, C, Pruesse, E, Yilmaz, P, et al., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41(D1):D590–D596.  https://doi.org/10.1093/nar/gks1219 CrossRefGoogle Scholar
  27. Ren, LJ, Ahn, Y, Logan, BE, 2014. A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-AFMBR) system for effective domestic wastewater treatment. Environmental Science & Technology, 48(7):4199–4206.  https://doi.org/10.1021/es500737m CrossRefGoogle Scholar
  28. She, P, Song, B, Xing, XH, et al., 2006. Electrolytic stimulation of bacteria Enterobacter dissolvens by a direct current. Biochemical Engineering Journal, 28(1):23–29.  https://doi.org/10.1016/j.bej.2005.08.033 CrossRefGoogle Scholar
  29. Shoener, BD, Bradley, IM, Cusick, RD, et al., 2014. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies. Environmental Science: Processes & Impacts, 16(6):1204–1222.  https://doi.org/10.1039/C3EM00711A Google Scholar
  30. Sleutels THJA, Hamelers HVM, Rozendal, RA, et al., 2009. Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes. International Journal of Hydrogen Energy, 34(9):3612–3620.  https://doi.org/10.1016/j.ijhydene.2009.03.004 CrossRefGoogle Scholar
  31. Soler-Cabezas, JL, Luján- Facundo, MJ, Mendoza- Roca, JA, et al., 2018. A comparative study of the influence of salt concentration on the performance of an osmotic membrane bioreactor and a sequencing batch reactor. Journal of Chemical Technology & Biotechnology, 93(1):72–79.  https://doi.org/10.1002/jctb.5321 CrossRefGoogle Scholar
  32. Song, XY, Luo, WH, McDonald, J, et al., 2018. An anaerobic membrane bioreactor–membrane distillation hybrid system for energy recovery and water reuse: removal performance of organic carbon, nutrients, and trace organic contaminants. Science of the Total Environment, 628–629:358–365.  https://doi.org/10.1016/j.scitotenv.2018.02.057 CrossRefGoogle Scholar
  33. Steinbusch KJJ, Hamelers HVM, Schaap, JD, et al., 2010. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environmental Science & Technology, 44(1):513–517.  https://doi.org/10.1021/es902371e CrossRefGoogle Scholar
  34. Sun, L, Tian, Y, Zhang, J, et al., 2018.. Wastewater treatment and membrane fouling with algal-activated sludge culture in a novel membrane bioreactor: influence of inoculation ratios}. Chemical Engineering Journal, 343:455–459.  https://doi.org/10.1016/j.cej.2018.03.022 CrossRefGoogle Scholar
  35. Sun, L, Tian, Y, Zhang, J, et al., 2018.. A novel symbiotic system combining algae and sludge membrane bioreactor technology for wastewater treatment and membrane fouling mitigation: performance and mechanism}. Chemical Engineering Journal, 344:246–253.  https://doi.org/10.1016/j.cej.2018.03.090 CrossRefGoogle Scholar
  36. Talvitie, J, Mikola, A, Koistinen, A, et al., 2017. Solutions to microplastic pollution–removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Research, 123:401–407.  https://doi.org/10.1016/j.watres.2017.07.005 CrossRefGoogle Scholar
  37. Teng, JH, Shen, LG, Yu, GY, et al., 2018. Mechanism analyses of high specific filtration resistance of gel and roles of gel elasticity related with membrane fouling in a membrane bioreactor. Bioresource Technology, 257:39–46.  https://doi.org/10.1016/j.biortech.2018.02.067 CrossRefGoogle Scholar
  38. Tian, Y, Ji, C, Wang, K, et al., 2014. Assessment of an anaerobic membrane bio-electrochemical reactor (AnMBER) for wastewater treatment and energy recovery. Journal of Membrane Science, 450:242–248.  https://doi.org/10.1016/j.memsci.2013.09.013 CrossRefGoogle Scholar
  39. Villano, M, Aulenta, F, Ciucci, C, et al., 2010. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresource Technology, 101(9): 3085–3090.  https://doi.org/10.1016/j.biortech.2009.12.077
  40. Wang, J, Bi, FH, Ngo, HH, et al., 2016. Evaluation of energydistribution of a hybrid microbial fuel cell–membrane bioreactor (MFC–MBR) for cost-effective wastewater treatment. Bioresource Technology, 200:420–425.  https://doi.org/10.1016/j.biortech.2015.10.042 CrossRefGoogle Scholar
  41. Wang, SJ, Hou, XC, Su, HJ, 2017. Exploration of the relationship between biogas production and microbial community under high salinity conditions. Science Report, 7:1149.  https://doi.org/10.1038/s41598-017-01298-y CrossRefGoogle Scholar
  42. Wang, YK, Sheng, GP, Li, WW, et al., 2011. Development of a novel bioelectrochemical membrane reactor for wastewater treatment. Environmental Science & Technology, 45(21):9256–9261.  https://doi.org/10.1021/es2019803 CrossRefGoogle Scholar
  43. Zhang, HM, Xia, J, Yang, Y, et al., 2009. Mechanism of calcium mitigating membrane fouling in submerged membrane bioreactors. Journal of Environmental Sciences, 21(8): 1066–1073.  https://doi.org/10.1016/S1001-0742(08)62383-9 CrossRefGoogle Scholar
  44. Zhang, HM, Jiang, W, Cui, HT, 2017. Performance of anaerobic forward osmosis membrane bioreactor coupled with microbial electrolysis cell (AnOMEBR) for energy recovery and membrane fouling alleviation. Chemical Engineering Journal, 321:375–383.  https://doi.org/10.1016/j.cej.2017.03.134 CrossRefGoogle Scholar
  45. Zhu, YJ, Wang, YY, Zhou, S, et al., 2018. Robust performance of a membrane bioreactor for removing antibiotic resistance genes exposed to antibiotics: role of membrane foulants. Water Research, 130:139–150.  https://doi.org/10.1016/j.watres.2017.11.067 CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Environmental Engineering, College of Environmental and Resource SciencesZhejiang UniversityHangzhouChina
  2. 2.Shanghai SUS Environment Co., Ltd.ShanghaiChina

Personalised recommendations