Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 20, Issue 7, pp 475–486 | Cite as

Determination of biomass-coal blending ratio by 14C measurement in co-firing flue gas

  • Yu-xing Tang
  • Zhong-yang LuoEmail author
  • Chun-jiang Yu
  • Jian-meng Cen
  • Qian-yuan Chen
  • Wen-nan Zhang
Article
  • 1 Downloads

Abstract

To verify the feasibility of using radiocarbon detection for the measurement of the biomass-coal blending ratio in co-firing heat and power plants, 14C activity detection technology that uses benzene synthesis as the sample preparation method and a liquid scintillation counter as the detection instrument was studied. A benzene synthesis system was built to enrich carbon in the combustion flue gas in the form of benzene. The benzene sample was mixed with scintillator (butyl-PBD) and 14C activity was measured using a liquid scintillation counter (Quantulus 1220). Three kinds of coal and six kinds of biomass were tested repeatedly. The measured 14C activity was 0.3365 DPM/gC in Zhundong lignite, 0.2701 DPM/gC in Shenmu bitumite, and 0.3060 DPM/gC in Changzhi anthracite. These values were much higher than the instrument background activity. For the co-fired experiment, we used groups with biomass ratios (based on the carbon) of 6.51%, 12.95%, and 20.75%. A modified empirical expression to determine the biomass, coal blending ratio based on the 14C activity measured in the co-firing flue gas, was proposed by analyzing and verifying measurement accuracy. From the 14C measurements of the co-fired samples, the corresponding estimated biomass ratios were (5.54±0.48)%, (12.31±0.67)%, and (19.49±0.90)%. The absolute measurement error was around 1% for a typical biomass-coal co-firing application.

Key words

Biomass co-firing Blending ratio determination Radiocarbon Benzene synthesis 

14C 法为基础的共燃烟气中生物质与煤的掺混比例测定方法

中文概要

目的:准确且可靠的生物质燃料掺混比例数据的缺失,阻碍了生物质/煤混燃发电技术在中国的发展。本文旨在建立以14C 法为基础的生物质掺混比例检测系统,并研究煤作为化石燃料的测试本底、不同生物质之间14C 含量的差异以及苯合成工艺中引入的现代碳污染对测试精度的影响,以验证该方法在混燃电站中实际应用的可行性。

创新点:1. 建立并使用适用于在工业混燃电站中应用的计算方法;2. 通过实验测试,获得了3 种由制样过程污染产生的煤中14C 含量;3. 通过对实际过程的经验拟合,提出更为合理的污染修正公式。

方法:1. 自主搭建苯合成系统(图2),并以液体闪光计数技术为核心形成样品14C 值测试体系;2. 通过 实验测试,获得6 种生物质与3 种煤的14C 测试 值(图3 和4),并验证混燃测试的可行性(图5); 3. 通过公式推导,在考虑煤中14C 含量后,更为 合理地修正苯合成过程中引入的污染,以减小混 燃测试的绝对误差(公式(9))。

结论:1. 光谱级纯苯的测试值为仪器的测试本底,而商 用SrCO3 制苯的测试值则反应了苯合成过程中引 入的污染本底。2. 对不同生物质的重复实验的测 试值落点均在理论计算误差范围内,证明了实验 中苯合成系统的可靠性。3. 运用研究中建立的计 算方法,获得了生物质混燃比例的测试值;14C 法应用于生物质/煤混燃电站的绝对测试误差在 1%左右。

关键词

生物质混燃烧 掺混比例测量 放射性碳 苯合成 

CLC number

TK6 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agbor E, Zhang XL, Kumar A, 2014. A review of biomass co-firing in North America. Renewable and Sustainable Energy Reviews, 40:930–943.  https://doi.org/10.1016/j.rser.2014.07.195 CrossRefGoogle Scholar
  2. ASTM (American Society for Testing and Materials), 2016. Standard Test Methods for Determining the Biobased Content of Solid, Liquid, and Gaseous Samples Using Radiocarbon Analysis, ASTM D 6866-2016. National Standards of American, USA.Google Scholar
  3. Calcagnile L, Quarta G, D’Elia M, et al., 2011. Radiocarbon AMS determination of the biogenic component in CO2 emitted from waste incineration. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 269(24):3158–3162.  https://doi.org/10.1016/j.nimb.2011.04.020 CrossRefGoogle Scholar
  4. Contreras ML, Ganesh N, Rodilla I, et al., 2018. Assess of biomass co-firing under oxy-fuel conditions on Hg spe-ciation and ash deposit formation. Fuel, 215:395–405.  https://doi.org/10.1016/j.fuel.2017.11.081 CrossRefGoogle Scholar
  5. Craig H, 1954. Carbon 13 in plants and the relationships between carbon 13 and carbon 14 variations in nature. The Journal of Geology, 62(2):115–149.  https://doi.org/10.1086/626141 MathSciNetCrossRefGoogle Scholar
  6. Fellner J, Rechberger H, 2009. Abundance of 14C in biomass fractions of wastes and solid recovered fuels. W a s t e Management, 29(5):1495–1503.  https://doi.org/10.1016/j.wasman.2008.11.023 Google Scholar
  7. Fuglsang K, Pedersen NH, Larsen AW, et al., 2014. Long-term sampling of CO2 from waste-to-energy plants: 14C determination methodology, data variation and uncertainty. Waste Management & Research, 32(2):115–123.  https://doi.org/10.1177/0734242X13517159 CrossRefGoogle Scholar
  8. García-Galindo D, Royo FJ, Sebastián F, 2010. Assessment of biomass co-firing potentials in coal power plants. Stro-jarstvo, 52(4):411–427.Google Scholar
  9. Hanke UM, Wacker L, Haghipour N, et al., 2017. Comprehensive radiocarbon analysis of benzene polycarboxylic acids (BPCAs) derived from pyrogenic carbon in environmental samples. Radiocarbon, 59(4):1103–1116.  https://doi.org/10.1017/RDC.2017.44 CrossRefGoogle Scholar
  10. Horvatinčić N, Barešić J, Bronić IK, et al., 2004. Measurement of low 14C activities in a liquid scintillation counter in the Zagreb Radiocarbon Laboratory. Radiocarbon, 46(1): 105–116.  https://doi.org/10.1017/S0033822200039412 CrossRefGoogle Scholar
  11. Hua Q, Barbetti M, Rakowski AZ, 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon, 55(4): 2059–2072.  https://doi.org/10.2458/azu_js_rc.v55i2.16177 CrossRefGoogle Scholar
  12. Lazaroiu G, Frentiu T, Mihaescu L, et al., 2009. The synergistic effect in coal/biomass blend briquettes combustion on elements behavior in bottom ash using ICP-OES. Journal of Optoelectronics and Advanced Materials, 11(5):713–721.Google Scholar
  13. Levin I, Kromer B, 2004. The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon, 46(3):1261–1272.  https://doi.org/10.1017/S0033822200033130 CrossRefGoogle Scholar
  14. Lewis CW, Klouda GA, Ellenson WD, 2004. Radiocarbon measurement of the biogenic contribution to summertime PM-2.5 ambient aerosol in Nashville, TN. Atmospheric Environment, 38(35):6053–6061.  https://doi.org/10.1016/j.atmosenv.2004.06.011 CrossRefGoogle Scholar
  15. Lowe DC, 1989. Problems associated with the use of coal as a source of 14C-free background material. Radiocarbon, 31(2):117–120.  https://doi.org/10.1017/S0033822200044775 CrossRefGoogle Scholar
  16. Lu JY, Fu LL, Li XM, et al., 2018. Capture efficiency of coal/biomass co-combustion ash in an electrostatic field. Particuology, 40:80–87.  https://doi.org/10.1016/j.partic.2017.10.006 CrossRefGoogle Scholar
  17. McCormac FG, Kalin RM, Long A, 1992. Radiocarbon dating beyond 50,000 years by liquid scintillation counting. In: Noakes JE, Schönhofer F (Eds.), Liquid Scintillation Spectrometry. Radiocarbon, Tucson, USA, p.125–133.Google Scholar
  18. Mohn J, Szidat S, Fellner J, et al., 2008. Determination of biogenic and fossil CO2 emitted by waste incineration based on 14CO2 and mass balances. Bioresource Technology, 99(14):6471–6479.  https://doi.org/10.1016/j.biortech.2007.11.042 CrossRefGoogle Scholar
  19. Mohn J, Szidat S, Zeyer K, et al., 2012. Fossil and biogenic CO2 from waste incineration based on a yearlong radiocarbon study. Waste Management, 32(8):1516–1520.  https://doi.org/10.1016/j.wasman.2012.04.002 CrossRefGoogle Scholar
  20. Mook W G, van der Plicht J, 1999. Reporting 14C activities and concentrations. Radiocarbon, 41(3):227–239.  https://doi.org/10.1017/S0033822200057106 CrossRefGoogle Scholar
  21. Nikolov J, Krajcar Bronić I, Todorović N, et al., 2018. Limitation and comparison of two methods for determination of biogenic fraction in liquid fuels by 14C. Proceedings of the 14th International Symposium on Radiation Physics ISRP-14, article 98.Google Scholar
  22. Niu ZC, Zhou WJ, Feng X, et al., 2018. Atmospheric fossil fuel CO2 traced by 14CO2 and air quality index pollutant observations in Beijing and Xiamen, China. Environmental Science and Pollution Research, 25(17):17109–17117.  https://doi.org/10.1007/s11356-018-1616-z CrossRefGoogle Scholar
  23. Noakes J, Norton G, Culp R, et al., 2005. A comparison of analytical methods for the certification of biobased products. Proceedings of the Liquid Scintillation Spectrometry, p.259–271.Google Scholar
  24. Norton GA, Devlin SL, 2006. Determining the modern carbon content of biobased products using radiocarbon analysis. Bioresource Technology, 97(16):2084–2090.  https://doi.org/10.1016/j.biortech.2005.08.017 CrossRefGoogle Scholar
  25. Palstra SWL, Meijer HAJ, 2010. Carbon-14 based determination of the biogenic fraction of industrial CO2 emissions–application and validation. Bioresource Technology, 101(10):3702–3710.  https://doi.org/10.1016/j.biortech.2009.12.004 CrossRefGoogle Scholar
  26. Palstra SWL, Meijer HAJ, 2014. Biogenic carbon fraction of biogas and natural gas fuel mixtures determined with 14C. Radiocarbon, 56(1):7–28.  https://doi.org/10.2458/56.16514 CrossRefGoogle Scholar
  27. Pawlyta J, Pazdur A, Rakowski AZ, et al., 1997. Commissioning of a Quantulus 1220™ liquid scintillation beta spectrometer for measuring 14C and 3H at natural abundance levels. Radiocarbon, 40(1):201–209.  https://doi.org/10.1017/S0033822200018051 CrossRefGoogle Scholar
  28. Quarta G, Ciceri G, Martinotti V, et al., 2015. Bringing AMS radiocarbon into the Anthropocene: potential and drawbacks in the determination of the bio-fraction in industrial emissions and in carbon-based products. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 361:521–525.  https://doi.org/10.1016/j.nimb.2015.01.058 CrossRefGoogle Scholar
  29. Quarta G, Calcagnile L, Cipriano D, et al., 2018. AMS-14C determination of the biogenic-fossil fractions in flue gases. Radiocarbon, 60(5):1327–1333.  https://doi.org/10.1017/RDC.2018.88 CrossRefGoogle Scholar
  30. Rodríguez LS, Muñoz JMB, Zambon A, et al., 2017. Determination of the biomass content of end-of-life tyres. In: Biomass Volume Estimation and Valorization for Energy. IntechOpen, London, UK.  https://doi.org/10.5772/65830 Google Scholar
  31. Salma I, Németh Z, Weidinger T, et al., 2017. Source apportionment of carbonaceous chemical species to fossil fuel combustion, biomass burning and biogenic emissions by a coupled radiocarbon–levoglucosan marker method. Atmospheric Chemistry and Physics, 17(22):13767–13781.  https://doi.org/10.5194/acp-17-13767-2017 CrossRefGoogle Scholar
  32. Staber W, Flamme S, Fellner J, 2008. Methods for determining the biomass content of waste. Waste Management & Research, 26(1):78–87.  https://doi.org/10.1177/0734242X07087313 CrossRefGoogle Scholar
  33. Stachów M, 2016. Radiocarbon 14C method as useful tool for flue gas monitoring application: review. Budownictwo i Inżynieria Środowiska, 7(4):247–251.Google Scholar
  34. Vogel JS, Nelson DE, Southon JR, 1987. 14C background levels in an accelerator mass spectrometry system. Radiocarbon, 29(3):323–333.  https://doi.org/10.1017/S0033822200043733 CrossRefGoogle Scholar
  35. Wolf C, Leino TJ, Stephan AR, et al., 2018. Online corrosion measurements in combination with deposit and aerosol analysis during the co-firing of straw with coal in electrically heated, small-scale pulverized fuel and circulating fluidized bed systems. Energy & Fuels, 32(2):2506–2516.  https://doi.org/10.1021/acs.energyfuels.7b03976 CrossRefGoogle Scholar
  36. Wu SG, 2017. Variation of atmospheric 14CO2 and its spatial distribution. Journal of Environmental Radioactivity, 169-170:116–121.  https://doi.org/10.1016/j.jenvrad.2017.01.012 CrossRefGoogle Scholar
  37. Zhou WJ, Wu SG, Huo WW, et al., 2014. Tracing fossil fuel CO2 using Δ14C in Xi’an City, China. Atmospheric Environment, 94:538–545.  https://doi.org/10.1016/j.atmosenv.2014.05.058 CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhouChina
  2. 2.Key Lab of Nucl. phys. & Ion-beam Appl. (MOE), Institute of Modern PhysicsFudan UniversityShanghaiChina
  3. 3.State Environmental Protection Key Lab on Radiation MonitoringMinistry of Environment and EcologyHangzhouChina
  4. 4.Department of Chemical EngineeringMid Sweden UniversitySundsvallSweden

Personalised recommendations