Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 20, Issue 4, pp 258–271

# Numerical and experimental investigation of damping in a dam-break problem with fluid-structure interaction

• Abdullah Demir
• Ali Ersin Dincer
• Zafer Bozkus
• Arris S. Tijsseling
Article
• 9 Downloads

## Abstract

There have been few experimental and numerical studies on damping effects in fluid-structure interaction (FSI) problems. Therefore, a comprehensive experimental study was conducted to investigate such effects. In experiments, a water column in a container was released and hit a rubber plate. It continued its motion until hitting a downstream wall where pressure transducers had been placed. The experiments were repeated using rubber plates with different thickness and material properties. Free-surface profiles, displacements of the rubber plates, and pressures were recorded. In addition, a numerical model was developed to simulate the violent interaction between the fluid and the elastic structure. Smoothed particle hydrodynamics (SPH) and finite element method (FEM) were used to model the fluid and the structure. Contact mechanics was used to model the coupling mechanism. The obtained numerical results were in agreement with the experimental data. We found that damping is a less important parameter in the FSI problem considered.

## Key words

Damping Fluid-structure interaction (FSI) Smoothed particle hydrodynamics (SPH) Contact mechanics Dam-break

# 与流固耦合相关的溃坝问题中阻尼的数值及实验研究

## 摘要

### 目的

1. 通过全面的实验研究考察阻尼在流固耦合(FSI)问题中的影响作用;2. 提出一套光滑粒子流体动力学(SPH)和有限元方法(FEM)相结合的耦合算法,并对流固耦合系统进行数值模拟。

### 创新点

1. 通过一系列实验研究惯性驱动问题中阻尼的影响并使用本文提出的数值方法进行验证;2. 该数值方法能够在不解耦的情况下对完整系统进行求解。

### 方法

1. 构建数值模型模拟流体和弹性结构之间的强烈相互作用;2. 利用SPH 和FEM对流体和结构分别进行模型化;3. 采用接触力学对系统中的流固耦合机理进行建模。

### 结论

1. 基于SPH-FEM 耦合的FSI 模型可成功模拟自由液面形状、橡胶板的位移以及容器壁上的压强;2. 模拟结果显示,在连续相互作用的惯性驱动问题中阻尼并不是必要的考虑因素。

TV312

## Preview

Unable to display preview. Download preview PDF.

## References

1. Amsden AA, Hirt CW, 1973. YAQUI: an Arbitrary Lagrangian-Eulerian Computer Program for Fluid Flow at All Speeds. Los Alamos Scientific Laboratory, New Mexico, USA.
2. Anderson JD, 1995. Computational Fluid Dynamics: the Basics with Applications. McGraw-Hill, New York, USA.Google Scholar
3. Attaway SW, Heinstein MW, Swegle JW, 1994. Coupling of smooth particle hydrodynamics with the finite element method. Nuclear Engineering and Design, 150(2–3):199–205. https://doi.org/10.1016/0029-5493(94)90136-8
4. Bathe KJ, Chaudhary A, 1985. A solution method for planar and axisymmetric contact problems. International Journal for Numerical Methods in Engineering, 21(1):65–88. https://doi.org/10.1002/nme.1620210107
5. Blevins RD, 2016. Formulas for Dynamics, Acoustics and Vibration. John Wiley & Sons, Chichester, West Sussex, UK.Google Scholar
6. Chopra AK, 2007. Dynamics of Structures: Theory and Applications to Earthquake Engineering. Pearson/Prentice Hall, Upper Saddle River, USA.Google Scholar
7. de Vuyst T, Vignjevic R, Campbell JC, 2005. Coupling between meshless and finite element methods. International Journal of Impact Engineering, 31(8):1054–1064. https://doi.org/10.1016/j.ijimpeng.2004.04.017
8. Demir A, 2017. Multi Segment Continuous Cables with Frictional Contact Along Their Span. PhD Thesis, Middle East Technical University, Ankara, Turkey.Google Scholar
9. Dinçer AE, 2017. Numerical Investigation of Free-surface and Pipe Flow Problems by Smoothed Particle Hydrodynamics. PhD Thesis, Middle East Technical University, Ankara, Turkey.Google Scholar
10. Dinçer AE, Bozkuş, Z, Tijsseling AS, 2018. Prediction of pressure variation at an elbow subsequent to a liquid slug impact by using smoothed particle hydrodynamics. Journal of Pressure Vessel Technology, 140(3):031303. https://doi.org/10.1115/1.4039696
11. Fernandez-Mendez S, Bonet J, Huerta A, 2005. Continuous blending of SPH with finite elements. Computers & Structures, 83(17–18):1448–1458. https://doi.org/10.1016/j.compstruc.2004.10.019
12. Forsythe GE, Wasow WR, 1960. Finite-difference Methods for Partial Differential Equations. Wiley, New York, USA.
13. Fourey G, Oger G, Le Touzé D, et al., 2010. Violent fluid-structure interaction simulations using a coupled SPH/FEM method. IOP Conference Series: Materials Science and Engineering, 10(1):012041. https://doi.org/10.1088/1757-899x/10/1/012041
14. Fourey G, Hermange C, Le Touzé D, et al., 2017. An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods. Computer Physics Communications, 217:66–81. https://doi.org/10.1016/j.cpc.2017.04.005
15. Gingold RA, Monaghan JJ, 1977. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181(3):375–389. https://doi.org/10.1093/mnras/181.3.375
16. Groenenboom PHL, Cartwright BK, 2010. Hydrodynamics and fluid-structure interaction by coupled SPH-FE method. Journal of Hydraulic Research, 48(S1):61–73. https://doi.org/10.1080/00221686.2010.9641246
17. Hirsch C, 1988. Numerical Computation of Internal and External Flows. John Wiley & Sons, New York, USA.
18. Hu DA, Long T, Xiao YH, et al., 2014. Fluid-structure interaction analysis by coupled FE-SPH model based on a novel searching algorithm. Computer Methods in Applied Mechanics and Engineering, 276:266–286. https://doi.org/10.1016/j.cma.2014.04.001
19. ISO (International Organization for Standardization), 1992. Quality Assurance Requirements for Measuring Equipment-Part 1: Metrological Confirmation System for Measuring Equipment, ISO 10012-1:1992. ISO, Geneva, Switzerland.Google Scholar
20. Koshizuka S, Oka Y, Tamako H, 1995. A particle method for calculating splashing of incompressible viscous fluid. Proceedings of the International Conference on Mathematics and Computations, Reactor Physics, and Environmental Analyses, p.1514–1521.Google Scholar
21. Lauber G, Hager W, 1998. Experiments to dambreak wave: horizontal channel. Journal of Hydraulics Research, 36(3):291–307. https://doi.org/10.1080/00221689809498620
22. Liu GR, Liu MB, 2003. Smoothed Particle Hydrodynamics: a Meshfree Particle Method. World Scientific, Singapore.
23. Long T, Hu DA, Yang G, et al., 2016. A particle-element contact algorithm incorporated into the coupling methods of FEM-ISPH and FEM-WCSPH for FSI problems. Ocean Engineering, 123:154–163. https://doi.org/10.1016/j.oceaneng.2016.06.040
24. Long T, Hu DA, Wan DT, et al., 2017. An arbitrary boundary with ghost particles incorporated in coupled FEM-SPH model for FSI problems. Journal of Computational Physics, 350:166–183. https://doi.org/10.1016/jjcp.2017.08.044
25. Lucy LB, 1977. A numerical approach to the testing of the fission hypothesis. Astronomical Journal, 82:1013–1024. https://doi.org/10.1086/112164
26. Monaghan JJ, 1989. On the problem of penetration in particle methods. Journal of Computational Physics, 82(1):1–15. https://doi.org/10.1016/0021-9991(89)90032-6
27. Monaghan JJ, 1992. Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics, 30:543–574. https://doi.org/10.1146/annurev.aa.30.090192.002551
28. Monaghan JJ, 1994. Simulating free surface flows with SPH. Journal of Computational Physics, 110(2):399–406. https://doi.org/10.1006/jcph.1994.1034
29. Newmark NM, 1959. A method of computation for structural dynamics. Journal of the Engineering Mechanics Division, 85(3):67–94.Google Scholar
30. Versteeg HK, Malalasekera W, 1995. An Introduction to Computational Fluid Dynamics: the Finite Volume Method. Longman, Malaysia.Google Scholar
31. Wilson EL, Farhoomand I, Bathe KJ, 1973. Nonlinear dynamic analysis for complex structures. Earthquake Engineering and Structural Dynamics, 1:241–252.
32. Yang Q, Jones V, McCue L, 2012. Free-surface flow interactions with deformable structures using an SPH-FEM model. Ocean Engineering, 55:136–147. https://doi.org/10.1016/j.oceaneng.2012.06.031
33. Zhang ZC, Qiang HF, Gao WR, 2011. Coupling of smoothed particle hydrodynamics and finite element method for impact dynamics simulation. Engineering Structures, 33(1):255–264. https://doi.org/10.1016/j.engstruct.2010.10.020

## Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

## Authors and Affiliations

• Abdullah Demir
• 1
• Ali Ersin Dincer
• 2
• Zafer Bozkus
• 3
• Arris S. Tijsseling
• 4
1. 1.Structural Laboratory, Department of Civil EngineeringErzurum Technical UniversityYakutiye/ErzurumTurkey
2. 2.Hydromechanics Laboratory, Department of Civil EngineeringErzurum Technical UniversityYakutiye/ErzurumTurkey
3. 3.Hydromechanics Laboratory, Department of Civil EngineeringMiddle East Technical UniversityÇankaya/AnkaraTurkey
4. 4.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands