Advertisement

Continuum damage modeling and progressive failure analysis of a Type III composite vessel by considering the effect of autofrettage

  • Bin-bin Liao
  • Dong-liang Wang
  • Li-yong Jia
  • Jin-yang ZhengEmail author
  • Chao-hua Gu
Article
  • 13 Downloads

Abstract

This paper aims to study the damage mechanisms and mechanical responses of a Type III composite vessel by considering the effect of autofrettage. Firstly, damage models using Hashin failure criteria and 3D strain-based damage evolution laws for composite layers are implemented by implicit finite element codes using ABAQUS-UMAT (user material subroutine module). Secondly, the appropriate autofrettage pressure is determined by finite element analysis (FEA), in which the fiber stress ratio and the generated residual stress in the aluminium liner are investigated according to the related regulations. Finally, the effects of the autofrettage process on the internal pressure-displacement curves and damage evolution behaviors for matrix and fiber are discussed. For a composite vessel after autofrettage, the stresses in the composite layers and aluminium liner are also explored. Results show that the progressive damage evolution behaviors of the composite vessel with autofrettage and without autofrettage are basically consistent except there is some difference during the unloading process and the repressurization process in respect of matrix damage.

Key words

Composite vessel Damage evolution behaviors Hashin failure criteria Finite element analysis (FEA) 

考虑自增强影响的III 型复合材料气瓶连续损伤 模拟及渐进失效分析

中文概要

目的

成型后的金属内胆复合材料气瓶, 即 III 型复合 材料气瓶(以下简称气瓶), 需采用自紧工艺来 提高疲劳寿命。最佳自紧压力是自紧工艺的重要 参数。本文旨在建立确定最佳自紧压力和气瓶渐 进失效的有限元方法, 研究自紧后气瓶纤维和基 体损伤演化规律, 并探讨自紧后气瓶复合材料层 和金属内衬层的应力变化。

创新点

1. 建立针对三维气瓶的Hashin 失效准则和指数 型损伤演化的渐进失效模型, 并通过ABAQUSUMAT 隐式有限元方法确定气瓶最佳自紧压力; 2. 通过渐进失效分析, 揭示自紧后的气瓶纤维和 基体损伤的损伤演化规律, 并阐明自紧对气瓶渐 进失效的影响。

方法

1. 基于连续损伤力学, 建立三维Hashin 失效准 则和指数型损伤演化的渐进失效理论模型;2. 通 过ABAUQS-UMAT 二次开发用户子程序实现渐 进失效理论模型, 并开展气瓶渐进失效计算; 3. 通过平板拉伸算例以及与气瓶试验数据对比, 验证模型的准确性。

结论

1. 基体损伤首先出现在螺旋层, 而纤维损伤首先 出现在环向层。2. 除了自紧后的泄压阶段和自紧 后重新加压至压力值等于自紧压力的升压阶段, 有无自紧的气瓶损伤演化规律基本一致;而在上 述泄压和升压阶段, 基体损伤保持不变, 说明经 过自紧后的气瓶在工作压力下存在基体损伤。 3. 当内压压力低于自紧压力时, 自紧工艺才会影 响气瓶应力分布;且随着压力的升高, 基体损伤 不变, 内衬应力减少, 纤维应力增加;此外, 经 过自紧的气瓶在工作压力下最大环向和轴向内 衬应力减少且出现在筒体部分的两端。

关键词

复合材料气瓶 损伤演化行为 Hashin 失效准则 有限元分析 

CLC number

TH49 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakaiyan H, Hosseini H, Ameri E, 2009. Analysis of multilayered filament-wound composite pipes under combined internal pressure and thermomechanical loading with thermal variations. Composite Structures, 88(4): 532–541. https: //doi.org/10.1016/j.compstruct.2008.05.017CrossRefGoogle Scholar
  2. DOT (Department of Transportation), 2007. Basic Requirements for Fully Wrapped Carbon-fiber Reinforced Aluminum Lined Cylinders, DOT-CFFC. DOT, USA.Google Scholar
  3. Francescato P, Gillet A, Leh D, et al., 2012. Comparison of optimal design methods for type 3 high-pressure storage tanks. Composite Structures, 94(6): 2087–2096. https: //doi.org/10.1016/j.compstruct.2012.01.018CrossRefGoogle Scholar
  4. Gentilleau B, Villalonga S, Nony F, et al., 2015. A probabilistic damage behavior law for composite material dedicated to composite pressure vessel. International Journal of Hydrogen Energy, 40(38): 13160–13164. https: //doi.org/10.1016/j.ijhydene.2015.04.043CrossRefGoogle Scholar
  5. Hashin Z, 1981. Fatigue failure criteria for unidirectional fiber composites. Journal of Applied Mechanics, 48(4): 846–852. https: //doi.org/10.1115/1.3157744CrossRefzbMATHGoogle Scholar
  6. Hashin Z, Rotem A, 1973. A fatigue failure criterion for fiber reinforced materials. Journal of Composite Materials, 7(4): 448–464. https: //doi.org/10.1177/002199837300700404CrossRefGoogle Scholar
  7. Hong JH, Han MG, Chang SH, 2014. Safety evaluation of 70 MPa-capacity type III hydrogen pressure vessel considering material degradation of composites due to temperature rise. Composite Structures, 113: 127–133. https: //doi.org/10.1016/j.compstruct.2014.03.008CrossRefGoogle Scholar
  8. Hu J, Chandrashekhara K, 2009. Fracture analysis of hydrogen storage composite cylinders with liner crack accounting for autofrettage effect. International Journal of Hydrogen Energy, 34(8): 3425–3435. https: //doi.org/10.1016/j.ijhydene.2009.01.094CrossRefGoogle Scholar
  9. Huang CH, Lee YJ, 2003. Experiments and simulation of the static contact crush of composite laminated plates. Composite Structures, 61(3): 265–270. https: //doi.org/10.1016/S0263-8223(02)00047-8CrossRefGoogle Scholar
  10. Jahromi BH, Ajdari A, Nayeb-Hashemi H, et al., 2010. Autofrettage of layered and functionally graded metal–ceramic composite vessels. Composite Structures, 92(8): 1813–1822. https: //doi.org/10.1016/j.compstruct.2010.01.019CrossRefGoogle Scholar
  11. Ju J, Pickle BD, Morgan RJ, et al., 2007. An initial and progressive failure analysis for cryogenic composite fuel tank design. Journal of Composite Materials, 41(21): 2545–2568. https: //doi.org/10.1177/0021998307076492CrossRefGoogle Scholar
  12. Kim CU, Kang JH, Hong CS, et al., 2005. Optimal design of filament wound structures under internal pressure based on the semi-geodesic path algorithm. Composite Structures, 67(4): 443–452. https: //doi.org/10.1016/j.compstruct.2004.02.003CrossRefGoogle Scholar
  13. Kim DH, Jung KH, Lee IG, et al., 2017. Three-dimensional progressive failure modeling of glass fiber reinforced thermoplastic composites for impact simulation. Composite Structures, 176: 757–767. https: //doi.org/10.1016/j.compstruct.2017.06.031CrossRefGoogle Scholar
  14. Lapczyk I, Hurtado JA, 2007. Progressive damage modeling in fiber-reinforced materials. Composites Part A: Applied Science and Manufacturing, 38(11): 2333–2341. https: //doi.org/10.1016/j.compositesa.2007.01.017CrossRefGoogle Scholar
  15. Li DH, Liu Y, Zhang X, 2014. Low-velocity impact responses of the stiffened composite laminated plates based on the progressive failure model and the layerwise/solidelements method. Composite Structures, 110: 249–275. https: //doi.org/10.1016/j.compstruct.2013.12.011CrossRefGoogle Scholar
  16. Liu PF, Xu P, Zheng JY, 2009. Artificial immune system for optimal design of composite hydrogen storage vessel. Computational Materials Science, 47(1): 261–267. https: //doi.org/10.1016/j.commatsci.2009.07.015CrossRefGoogle Scholar
  17. Liu PF, Chu JK, Hou SJ, et al., 2012a. Micromechanical damage modeling and multiscale progressive failure analysis of composite pressure vessel. Computational Materials Science, 60: 137–148. https: //doi.org/10.1016/j.commatsci.2012.03.015CrossRefGoogle Scholar
  18. Liu PF, Chu JK, Hou SJ, et al., 2012b. Numerical simulation and optimal design for composite high-pressure hydrogen storage vessel: a review. Renewable and Sustainable Energy Reviews, 16(4): 1817–1827. https: //doi.org/10.1016/j.rser.2012.01.006CrossRefGoogle Scholar
  19. Liu PF, Chu JK, Liu YL, et al., 2012c. A study on the failure mechanisms of carbon fiber/epoxy composite laminates using acoustic emission. Materials & Design, 37: 228–235. https: //doi.org/10.1016/j.matdes.2011.12.015CrossRefGoogle Scholar
  20. Liu PF, Xing LJ, Zheng JY, 2014. Failure analysis of carbon fiber/epoxy composite cylindrical laminates using explicit finite element method. Composites Part B: Engineering, 56: 54–61. https: //doi.org/10.1016/j.compositesb.2013.08.017CrossRefGoogle Scholar
  21. Liu PF, Liao BB, Jia LY, et al., 2016. Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact. Composite Structures, 149: 408–422. https: //doi.org/10.1016/j.compstruct.2016.04.012CrossRefGoogle Scholar
  22. Onder A, Sayman O, Dogan T, et al., 2009. Burst failure load of composite pressure vessels. Composite Structures, 89(1): 159–166. https: //doi.org/10.1016/j.compstruct.2008.06.021CrossRefGoogle Scholar
  23. Puck A, Schürmann H, 2002. Failure analysis of FRP laminates by means of physically based phenomenological models. Composites Science and Technology, 62(12–13): 1633–1662. https: //doi.org/10.1016/S0266-3538(01)00208-1CrossRefGoogle Scholar
  24. Rafiee R, Reshadi F, 2014. Simulation of functional failure in GRP mortar pipes. Composite Structures, 113: 155–163. https: //doi.org/10.1016/j.compstruct.2014.03.024CrossRefGoogle Scholar
  25. Rafiee R, Amini A, 2015. Modeling and experimental evaluation of functional failure pressures in glass fiber reinforced polyester pipes. Computational Materials Science, 96: 579–588. https: //doi.org/10.1016/j.commatsci.2014.03.036CrossRefGoogle Scholar
  26. Rafiee R, Fakoor M, Hesamsadat H, 2015a. The influence of production inconsistencies on the functional failure of GRP pipes. Steel and Composite Structures, 19(6): 1369–1379. https: //doi.org/10.12989/scs.2015.19.6.1369CrossRefGoogle Scholar
  27. Rafiee R, Reshadi F, Eidi S, 2015b. Stochastic analysis of functional failure pressures in glass fiber reinforced polyester pipes. Materials & Design, 67: 422–427. https: //doi.org/10.1016/j.matdes.2014.12.003CrossRefGoogle Scholar
  28. Son DS, Chang SH, 2012. Evaluation of modeling techniques for a type III hydrogen pressure vessel (70 MPa) made of an aluminum liner and a thick carbon/epoxy composite for fuel cell vehicles. International Journal of Hydrogen Energy, 37(3): 2353–2369. https: //doi.org/10.1016/j.ijhydene.2011.11.001CrossRefGoogle Scholar
  29. Son DS, Hong JH, Chang SH, 2012. Determination of the autofrettage pressure and estimation of material failures of a Type III hydrogen pressure vessel by using finite element analysis. International Journal of Hydrogen Energy, 37(17): 12771–12781. https: //doi.org/10.1016/j.ijhydene.2012.06.044CrossRefGoogle Scholar
  30. Tan W, Falzon BG, Chiu LNS, et al., 2015. Predicting low velocity impact damage and compression-after-impact (CAI) behaviour of composite laminates. Composites Part A: Applied Science and Manufacturing, 71: 212–226. https: //doi.org/10.1016/j.compositesa.2015.01.025CrossRefGoogle Scholar
  31. Tsai SW, Wu EM, 1971. A general theory of strength for anisotropic materials. Journal of Composite Materials, 5(1): 58–80. https: //doi.org/10.1177/002199837100500106CrossRefGoogle Scholar
  32. Vasiliev VV, Krikanov AA, Razin AF, 2003. New generation of filament-wound composite pressure vessels for commercial applications. Composite Structures, 62(3–4): 449–459. https: //doi.org/10.1016/j.compstruct.2003.09.019CrossRefGoogle Scholar
  33. Wang L, Zheng CX, Luo HY, et al., 2015. Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel. Composite Structures, 134: 475–482. https: //doi.org/10.1016/j.compstruct.2015.08.107CrossRefGoogle Scholar
  34. Xia M, Takayanagi H, Kemmochi K, 2001. Analysis of multilayered filament-wound composite pipes under internal pressure. Composite Structures, 53(4): 483–491. https: //doi.org/10.1016/S0263-8223(01)00061-7CrossRefGoogle Scholar
  35. Xiao FQ, Wu YZ, Zheng JY, et al., 2017. A load-holding time prediction method based on creep strain relaxation for the cold-stretching process of S30408 cryogenic pressure vessels. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 18(3): 871–881. https: //doi.org/10.1631/jzus.A1600798CrossRefGoogle Scholar
  36. Xu P, Zheng JY, Chen HG, et al., 2010. Optimal design of high pressure hydrogen storage vessel using an adaptive genetic algorithm. International Journal of Hydrogen Energy, 35(7): 2840–2846. https: //doi.org/10.1016/j.ijhydene.2009.05.008CrossRefGoogle Scholar
  37. Zheng CX, Yang F, Zhu AS, 2009. Mechanical analysis and reasonable design for Ti-Al alloy liner wound with carbon fiber resin composite high pressure vessel. Journal of Zhejiang University-SCIENCE A, 10(3): 384–391. https: //doi.org/10.1631/jzus.A0820025CrossRefzbMATHGoogle Scholar
  38. Zheng CX, Wang L, Li R, et al., 2013. Fatigue test of carbon epoxy composite high pressure hydrogen storage vessel under hydrogen environment. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(6): 393–400. https: //doi.org/10.1631/jzus.A1200297CrossRefGoogle Scholar
  39. Zheng JY, Liu PF, 2008. Elasto-plastic stress analysis and burst strength evaluation of Al-carbon fiber/epoxy composite cylindrical laminates. Computational Materials Science, 42(3): 453–461. https: //doi.org/10.1016/j.commatsci.2007.09.011CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Process EquipmentZhejiang UniversityHangzhouChina
  2. 2.State Key Laboratory of Fluid Power and Mechatronic SystemsZhejiang UniversityHangzhouChina
  3. 3.First Aircraft Institute of Aviation Industry CorporationXi′anChina

Personalised recommendations