Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 19, Issue 9, pp 691–703 | Cite as

Updated Bayesian detection of foundation parameter with Jeeves pattern search theory

  • Jian Zhang
  • Chao Jia
  • Chu-wei Zhou
Article
  • 7 Downloads

Abstract

Updated Bayesian detection of foundation parameters in the specific foundation mechanical model was studied based on Jeeves pattern search theory. Firstly, the updated Bayesian objective function for general foundation parameters was derived which could synchronously take the stochastic property of systematic parameters and systematic responses into account. Then the governing differential equations for the Winkler foundation model were gained with elastic Mindlin plate theory and the Fourier close form solution of the foundation model was achieved with the Fourier transform method. After the step length of pattern movement was determined with the quadratic parabolic interpolation method, the updated Bayesian detection of stochastic foundation parameters was resolved with Jeeves pattern search theory and then the corresponding detection procedure was completed. Through particular example analysis, the updated Bayesian detection of stochastic foundation parameters has excellent numerical stability and convergence during iterative processes. Jeeves pattern search theory is unconcerned with the partial derivatives of systematic responses to foundation parameters, and undoubtedly has satisfactory iterative efficiency compared with the available Kalman filtering or conjugate gradient detections of the significant foundation parameters. If the iterative processes are efficiently convergent, it is an important prerequisite that the systematic response assignment should be accurate enough. The derived Jeeves pattern search method with updated Bayesian theory can be applied in other kinds of foundation parameters.

Key words

Jeeves pattern search theory Updated Bayesian objective function Detection Foundation parameters Fourier close form solution 

基于Jeeves模式搜索理论地基参数的更新Bayes探测法

摘要

目 的

通过Jeeves模式搜索理论建立弹性地基参数的更新Bayes探测分析模型, 以及获得地基参数的寻优搜索结果。

创新点

  1. 1.

    根据Bayes统计理论, 推导更新Bayes误差函数。

     
  2. 2.

    结合最优步长的抛物线插值理论, 推求地基参数的Jeeves模式搜索寻优方法, 建立地基参数的探测分析模型。

     

方 法

  1. 1.

    根据Bayes统计理论, 推导更新Bayes误差函数(公式(4))及误差函数对地基参数的梯度表达式(公式(5))。

     
  2. 2.

    根据中厚度弹性地基板理论, 推求Winkler地基上板的控制微分方程(公式(19))和Fourier闭式解(公式(20))。

     
  3. 3.

    提出最优步长的抛物线插值寻优方案, 并结合Jeeves模式搜索理论建立弹性地基参数的更新Bayes探测分析模型。

     

结 论

  1. 1.

    基于更新Bayes理论, 可研究地基参数的Jeeves模式搜索分析模型, 且地基参数的探测迭代过程具有良好的稳定性与收敛性。

     
  2. 2.

    更新Bayes误差函数能同时考虑不同量测次数和不同测点的位移实测信息, 计算效率较高。

     
  3. 3.

    与共轭梯度法和Kalman滤波方法不同的是, Jeeves模式搜索理论的迭代过程不涉及误差函数偏导数计算, 避免了迭代过程的误差累积。

     

关键词

Jeeves 模式搜索理论 更新 Bayes 误差函数 探测 地基参数 Fourier 闭式解 

CLC number

TU470 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al–Hammoud R, Soudki K, Topper TH, 2011. Fatigue flexural behavior of corroded reinforced concrete beams repaired with CFRP sheets. Journal of Composites for Construction, 15(1):42–51.  https://doi.org/10.1061/(asce)cc.1943-5614.0000144 CrossRefGoogle Scholar
  2. Azevedo RF, Parreira AB, Zornberg JG, 2002. Numerical analysis of a tunnel in residual soils. Journal of Geotechnical and Geoenvironmental Engineering, 128(3): 227–236.  https://doi.org/10.1061/(asce)1090-0241(2002)128:3(227) CrossRefGoogle Scholar
  3. Belabed Z, Houari MSA, Tounsi A, et al., 2014. An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates. Composites Part B: Engineering, 60:274–283.  https://doi.org/10.1016/j.compositesb.2013.12.057 CrossRefGoogle Scholar
  4. Beldjelili Y, Tounsi A, Mahmoud SR, 2016. Hygro–thermomechanical bending of S–FGM plates resting on variable elastic foundations using a four–variable trigonometric plate theory. Smart Structures and Systems, 18(4):755–786.  https://doi.org/10.12989/sss.2016.18.4.755 CrossRefGoogle Scholar
  5. Bennoun M, Houari MSA, Tounsi A, 2016. A novel fivevariable refined plate theory for vibration analysis of functionally graded sandwich plates. Mechanics of Advanced Materials and Structures, 23(4):423–431.  https://doi.org/10.1080/15376494.2014.984088 CrossRefGoogle Scholar
  6. Besseghier A, Houari MSA, Tounsi A, et al., 2017. Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory. Smart Structures and Systems, 19(6):601–614.  https://doi.org/10.12989/sss.2017.19.6.601 Google Scholar
  7. Bouderba B, Houari MSA, Tounsi A, 2013. Thermomechanical bending response of FGM thick plates resting on Winkler–Pasternak elastic foundations. Steel and Composite Structures, 14(1):85–104.  https://doi.org/10.12989/scs.2013.14.1.085 CrossRefGoogle Scholar
  8. Bounouara F, Benrahou KH, Belkorissat I, et al., 2016. A nonlocal zeroth–order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation. Steel and Composite Structures, 20(2):227–249.  https://doi.org/10.12989/scs.2016.20.2.227 CrossRefGoogle Scholar
  9. Bourada M, Kaci A, Houari MSA, et al., 2015. A new simple shear and normal deformations theory for functionally graded beams. Steel and Composite Structures, 18(2): 409–423.  https://doi.org/10.12989/scs.2015.18.2.409 CrossRefGoogle Scholar
  10. Bousahla AA, Houari MSA, Tounsi A, et al., 2014. A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates. International Journal of Computational Methods, 11(6):1350082.  https://doi.org/10.1142/S0219876213500825 MathSciNetCrossRefzbMATHGoogle Scholar
  11. Carrier III WD, 2005. Pipeline supported on a nonuniform Winkler soil model. Journal of Geotechnical and Geoenvironmental Engineering, 131(10):1301–1304.  https://doi.org/10.1061/(asce)1090-0241(2005)131:10(1301) CrossRefGoogle Scholar
  12. Cury A, Cremona C, Dumoulin J, 2012. Long–term monitoring of a PSC box girder bridge: operational modal analysis, data normalization and structural modification assessment. Mechanical Systems and Signal Processing, 33:13–37.  https://doi.org/10.1016/j.ymssp.2012.07.005 CrossRefGoogle Scholar
  13. Hamdia KM, Zhuang XY, He PF, et al., 2016. Fracture toughness of polymeric particle nanocomposites: evaluation of models performance using Bayesian method. Composites Science and Technology, 126:122–129.  https://doi.org/10.1016/j.compscitech.2016.02.012 CrossRefGoogle Scholar
  14. Hamdia KM, Silani M, Zhuang XY, et al., 2017. Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. International Journal of Fracture, 206(2):215–227.  https://doi.org/10.1007/s10704-017-0210-6 CrossRefGoogle Scholar
  15. Hamidi A, Houari MSA, Mahmoud SR, et al., 2015. A sinusoidal plate theory with 5–unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates. Steel and Composite Structures, 18(1): 235–253.  https://doi.org/10.12989/scs.2015.18.1.235 CrossRefGoogle Scholar
  16. Hebali H, Tounsi A, Houari MSA, et al., 2014. New quasi–3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates. Journal of Engineering Mechanics, 140(2):374–383.  https://doi.org/10.1061/(asce)em.1943-7889.0000665 CrossRefGoogle Scholar
  17. Li TC, Lyu LX, Zhang SL, et al., 2015. Development and application of a statistical constitutive model of damaged rock affected by the load–bearing capacity of damaged elements. Journal of Zhejiang University–SCIENCE A (Applied Physics & Engineering), 16(8):644–655.  https://doi.org/10.1631/jzus.A1500034 CrossRefGoogle Scholar
  18. Liu XB, Solecki R, 2001. Green’s function for an infinite elastic plate on Winkler’s foundation. Journal of Engineering Mechanics, 127(3):305–307.  https://doi.org/10.1061/(asce)0733-9399(2001)127:3(305) CrossRefGoogle Scholar
  19. Meziane MAA, Abdelaziz HH, Tounsi A, 2014. An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions. Journal of Sandwich Structures & Materials, 16(3):293–318.  https://doi.org/10.1177/1099636214526852 CrossRefGoogle Scholar
  20. Nanthakumar SS, Lahmer T, Rabczuk T, 2013. Detection of flaws in piezoelectric structures using extended FEM. International Journal of Numerical Methods in Engineering, 96(6):373–389.  https://doi.org/10.1002/nme.4565 MathSciNetCrossRefzbMATHGoogle Scholar
  21. Nanthakumar SS, Lahmer T, Zhuang X, et al., 2016. Detection of material interfaces using a regularized level set method in piezoelectric structures. Inverse Problems in Science and Engineering, 24(1):153–176.  https://doi.org/10.1080/17415977.2015.1017485 MathSciNetCrossRefGoogle Scholar
  22. Silva MA, Swan CC, Arora JS, et al., 2001. Failure criterion for RC members under biaxial bending and axial load. Journal of Structural Engineering, 127(8):922–929.  https://doi.org/10.1061/(asce)0733-9445(2001)127:8(922) CrossRefGoogle Scholar
  23. Sun J, Jiang SP, Yuan Y, et al., 1996. Stochastic Back Analysis Theory and Method of Geotechnical Mechanics. Shantou University Press, Shantou, China, p.68–90 (in Chinese).Google Scholar
  24. Tan P, Ma JE, Zhou J, et al., 2016. Sustainability development strategy of China’s high speed rail. Journal of Zhejiang University–SCIENCE A (Applied Physics & Engineering), 17(12): 923–932.  https://doi.org/10.1631/jzus.A1600747 CrossRefGoogle Scholar
  25. Vu–Bac N, Lahmer T, Zhuang X, et al., 2016. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 100:19–31.  https://doi.org/10.1016/j.advengsoft.2016.06.005 CrossRefGoogle Scholar
  26. Wen QJ, 2011. Long–term effect analysis of prestressed concrete box–girder bridge widening. Construction and Building Materials, 25(4):1580–1586.  https://doi.org/10.1016/j.conbuildmat.2010.09.041 CrossRefGoogle Scholar
  27. Xin Y, Zhang J, Han XD, et al., 2014. Research on ultimate load of highway prestressed concrete U–shaped continuous rigid frame bridge based on nonlinear finite method. Applied Mechanics and Materials, 501–504:1398–1402.  https://doi.org/10.4028/www.scientific.net/amm.501-504.1398 CrossRefGoogle Scholar
  28. Yahia SA, Atmane HA, Houari MSA, et al., 2015. Wave propagation in functionally graded plates with porosities using various higher–order shear deformation plate theories. Structural Engineering and Mechanics, 53(6):1143–1165.  https://doi.org/10.12989/sem.2015.53.6.1143 CrossRefGoogle Scholar
  29. Zerwer A, Cascante G, Hutchinson J, 2002. Parameter estimation in finite element simulations of Rayleigh waves. Journal of Geotechnical and Geoenvironmental Engineering, 128(3):250–261.  https://doi.org/10.1061/(asce)1090-0241(2002)128:3(250) CrossRefGoogle Scholar
  30. Zhang J, Ye JS, Tang XS, 2008. Kalman filtering identification of Winkler foundation’s parameter based on Mindlin theory. Rock and Soil Mechanics, 29(2):425–430 (in Chinese).  https://doi.org/10.3969/j.issn.1000-7598.2008.02.025 Google Scholar
  31. Zhang J, Zhou CW, Lan WG, et al., 2010. Nonlinear dynamical identification of displacement parameters of multicell curve box based on Markov error theory. Chinese Journal of Applied Mechanics, 27(4):746–750 (in Chinese).Google Scholar
  32. Zhang J, Zhou CW, Jia C, et al., 2017. Powell inversion mechanical model of foundation parameters with generalized Bayesian theory. Journal of Zhejiang University–SCIENCE A (Applied Physics & Engineering), 18(7): 567–578.  https://doi.org/10.1631/jzus.A1600440 CrossRefGoogle Scholar
  33. Zhao XM, 2007. Dynamic Bayesian identification of Winkler subgrade parameter based on Mindlin theory. Engineering Mechanics, 24(10):57–63 (in Chinese).  https://doi.org/10.3969/j.issn.1000-4750.2007.10.011 Google Scholar
  34. Zidi M, Tounsi A, Houari MSA, et al., 2014. Bending analysis of FGM plates under hygro–thermo–mechanical loading using a four variable refined plate theory. Aerospace Science and Technology, 34:24–34.  https://doi.org/10.1016/j.ast.2014.02.001 CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanics and Structural EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.School of Civil EngineeringShandong UniversityJinanChina

Personalised recommendations