Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 19, Issue 9, pp 704–718 | Cite as

Active control experiments on a herringbone ribbed cable dome

  • Xiao-tian Liang
  • Xing-fei Yuan
  • Shi-lin Dong
Article
  • 18 Downloads

Abstract

Active control experiments on a newly proposed herringbone ribbed cable dome are described in this study. The cables of the dome are designed to have the ability to change length in order to adjust the geometrical configuration and the force distribution of the structure. Thereby, the dome is adaptable to different load cases. To begin with, for achieving the control amount for the active control test, an active control algorithm based on a nonlinear force method is presented. Then, an assembly and pre-stressing procedure is implemented. Active adjustment tests on three possible types of adjustable cables are performed to provide a practical method for the following active control test. The active control test demonstrates the applicability of the active control algorithm to achieve both force control and shape control. The method can be used to prevent failure of the cable domes due to slackening of the ridge cables and excessive displacements of the central section of the cable dome. The experiments verify the proposed control algorithm and the feasibility of the cable dome to adapt to excessive full span load and maintain the integrity of the structure.

Key words

Herringbone ribbed cable dome Active control Nonlinear force method Force control Shape control 

肋环人字型索穹顶主动控制试验研究

摘要

目 的

本文选取一大型肋环人字型索穹顶结构模型为试验对象进行主动控制试验研究, 验证主动控制方法应用于索杆张力结构的可行性。

创新点

  1. 1.

    提出通过改变索杆张力结构的形状来提高结构承载性能的方法, 并基于非线性力法提出索杆张力结构形状控制和内力控制的计算模型。

     
  2. 2.

    设计具有长度可调拉索单元的肋环人字型索穹顶模 型进行主动控制试验研究, 并将结构响应的试验结果与理论计算结果进行对比。

     

方 法

  1. 1.

    以结构形状和杆件内力为控制目标建立求解主动单元调控量的计算模型, 编制计算程序进行主动单元调控量的计算;

     
  2. 2.

    通过对具有拉索长度可调单元的肋环人字型索穹顶进行模型试验研究, 考察结构主动调控过程和主动控制过程的结构响应情况。

     

结 论

  1. 1.

    基于非线性力法推导索杆张力结构的结构响应计算公式, 推导结果可应用于结构主动控制的计算中;

     
  2. 2.

    对具有拉索长度可调单元的肋环人字型索穹顶进行模型试验研究, 结果表明利用本文提出的理论方法得到的控制方案可达到所设定的结构控制目;

     
  3. 3.

    试验值与理论计算值数据吻合良好, 验证本文理论计算模型的正确性和应用于实际结构的可行性。

     

关键词

肋环人字型索穹顶结构 主动控制 非线性力法 内力控制 形状控制 

CLC number

TU394 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam B, Smith IF, 2007. Self–diagnosis and self–repair of an active tensegrity structure. Journal of Structural Engineering, 133(12):1752–1761.  https://doi.org/10.1061/(ASCE)0733-9445(2007)133:12(1752) CrossRefGoogle Scholar
  2. Adam B, Smith IFC, 2008. Active tensegrity: a control framework for an adaptive civil–engineering structure. Computers & Structures, 86(23–24):2215–2223.  https://doi.org/10.1016/j.compstruc.2008.05.006 CrossRefGoogle Scholar
  3. Chen LM, Dong SL, 2011. Dynamical characteristics research on cable dome. Advanced Materials Research, 163–167: 3882–3886.  https://doi.org/10.4028/www.scientific.net/AMR.163-167.3882 Google Scholar
  4. Djouadi S, Motro R, Pons JC, et al., 1998. Active control of tensegrity systems. Journal of Aerospace Engineering, 11(2):37–44.  https://doi.org/10.1061/(ASCE)0893-1321(1998)11:2(37) CrossRefGoogle Scholar
  5. Dong SL, Liang HQ, 2014. Mechanical characteristics and analysis of prestressing force distribution of herringbone ribbed cable dome. Journal of Building Structures, 35(6):102–108 (in Chinese).  https://doi.org/10.14006/j.jzjgxb.2014.06.012 Google Scholar
  6. Fest E, Shea K, Domer B, et al., 2003. Adjustable tensegrity structures. Journal of Structural Engineering, 129(4): 515–526.  https://doi.org/10.1061/(ASCE)0733-9445(2003)129:4(515) CrossRefGoogle Scholar
  7. Fest E, Shea K, Smith IFC, 2004. Active tensegrity structure. Journal of Structural Engineering, 130(10):1454–1465.  https://doi.org/10.1061/(ASCE)0733-9445(2004)130:10(1454) CrossRefGoogle Scholar
  8. Fuller RB, 1962. Tensile–integrity Structures. US Patent 3063521.Google Scholar
  9. Geiger DH, Stenfaniuk A, Chen D, 1986. The design and construction of two cable domes for the Korean Olympics. Proceedings of the IASS Symposium on Shells, Membranes and Space Frames, p.265–272.Google Scholar
  10. Guo JM, Zhu ML, 2016. Negative Gaussian curvature cable dome and its feasible prestress design. Journal of Aerospace Engineering, 29(3):04015077.  https://doi.org/10.1061/(ASCE)AS.1943-5525.0000585 CrossRefGoogle Scholar
  11. Kim SD, Sin IA, 2014. A comparative analysis of dynamic instability characteristic of Geiger–typed cable dome structures by load condition. Journal of the Korean Association for Spatial Structures, 14(1):85–91.  https://doi.org/10.9712/KASS.2014.14.1.085 CrossRefGoogle Scholar
  12. Kmet S, Mojdis M, 2015. Adaptive cable dome. Journal of Structural Engineering, 141(9):04014225.  https://doi.org/10.1061/(ASCE)ST.1943-541X.0001189 CrossRefGoogle Scholar
  13. Korkmaz S, Ali NBH, Smith IFC, 2012. Configuration of control system for damage tolerance of a tensegrity bridge. Advanced Engineering Informatics, 26(1):145–155.  https://doi.org/10.1016/j.aei.2011.10.002 CrossRefGoogle Scholar
  14. Levy MP, 1994. The Georgia dome and beyond: achieving lightweight–longspan structures. Spatial, Lattice and Tension Structures: Proceedings of the IASS–ASCE International Symposium, p.560–562.Google Scholar
  15. Li KN, Huang DH, 2011. Static behavior of Kiewitt6 suspendome. Structural Engineering and Mechanics, 37(3): 309–320.  https://doi.org/10.12989/sem.2011.37.3.309 Google Scholar
  16. Luo YZ, Lu JY, 2006. Geometrically non–linear force method for assemblies with infinitesimal mechanisms. Computers & Structures, 84(31–32):2194–2199.  https://doi.org/10.1016/j.compstruc.2006.08.063 CrossRefGoogle Scholar
  17. Oppenheim IJ, Williams WO, 1997. Tensegrity prisms as adaptive structures. Proceedings of the ASME International Mechanical Engineering Congress and Exposition, p.113–120.Google Scholar
  18. Pellegrino S, 1990. Analysis of prestressed mechanisms. International Journal of Solids and Structures, 26(12): 1329–1350.  https://doi.org/10.1016/0020-7683(90)90082-7 Google Scholar
  19. Pellegrino S, Calladine CR, 1986. Matrix analysis of statically and kinematically indeterminate frameworks. International Journal of Solids and Structures, 22(4):409–428.  https://doi.org/10.1016/0020-7683(86)90014-4 CrossRefGoogle Scholar
  20. Pellegrino S, Kwan ASK, van Heerden TF, 1992. Reduction of equilibrium, compatibility and flexibility matrices, in the force method. International Journal for Numerical Methods in Engineering, 35(6):1219–1236.  https://doi.org/10.1002/nme.1620350605 CrossRefzbMATHGoogle Scholar
  21. Skelton RE, de Oliveira MC, 2009. Tensegrity Systems. Springer, Boston, MA, USA.Google Scholar
  22. Soong TT, Manolis GD, 1987. Active structures. Journal of Structural Engineering, 113(11):2290–2302.  https://doi.org/10.1061/(ASCE)0733-9445(1987)113:11(2290) CrossRefGoogle Scholar
  23. Tang JM, Shen ZY, 1998. The analysis of static mechanical properties for cable domes. Spatial Structures, 4(3):17–25.  https://doi.org/10.13849/j.issn.1006-6578.1998.03.003 Google Scholar
  24. van de Wijdeven J, de Jager B, 2005. Shape change of tensegrity structures: design and control. American Control Conference, p.2522–2527.  https://doi.org/10.1109/ACC.2005.1470346 Google Scholar
  25. Wang ZH, Yuan XF, Dong SL, 2010. Simple approach for force finding analysis of circular Geiger domes with consideration of self–weight. Journal of Constructional Steel Research, 66(2):317–322.  https://doi.org/10.1016/j.jcsr.2009.09.010 MathSciNetCrossRefGoogle Scholar
  26. Wei DM, Li D, Liu YQ, 2015. Dominant modals of wind–induced vibration response for spherical Kiewitt cable dome. Advanced Materials Research, 1065–1069: 1156–1159.  https://doi.org/10.4028/www.scientific.net/AMR.1065-1069.1156 Google Scholar
  27. Xi Y, Xi Z, Qin WH, 2011. Form–finding of cable domes by simplified force density method. Proceedings of the Institution of Civil Engineers–Structures and Buildings, 164(3):181–195.  https://doi.org/10.1680/stbu.9.00066 CrossRefGoogle Scholar
  28. Xu X, Luo Y, 2009. Non–linear displacement control of prestressed cable structures. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 223(7):1001–1007.  https://doi.org/10.1243/09544100JAERO455 CrossRefGoogle Scholar
  29. You Z, 1997. Displacement control of prestressed structures. Computer Methods in Applied Mechanics and Engineering, 144(1–2):51–59.  https://doi.org/10.1016/S0045-7825(96)01164-4 CrossRefzbMATHGoogle Scholar
  30. Yuan XF, Dong SU, 2002. Nonlinear analysis and optimum design of cable domes. Engineering Structures, 24(7): 965–977.  https://doi.org/10.1016/S0141-0296(02)00017-2 CrossRefGoogle Scholar
  31. Zhang LM, Chen WJ, Dong SL, 2014. Natural vibration and wind–induced response analysis of the non–fully symmetric Geiger cable dome. Journal of Vibroengineering, 16(1):31–41.Google Scholar
  32. Zhu ML, Dong SL, Yuan XF, 2013. Failure analysis of a cable dome due to cable slack or rupture. Advances in Structural Engineering, 16(2):259–271.  https://doi.org/10.1260/1369-4332.16.2.259 CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Space Structures Research CenterZhejiang UniversityHangzhouChina

Personalised recommendations