Advertisement

Nanoscale cryptographic architecture design using quantum-dot cellular automata

  • Bikash Debnath
  • Jadav Chandra Das
  • Debashis DeEmail author
Article
  • 1 Downloads

Abstract

Quantum-dot cellular automata (QCA) based on cryptography is a new paradigm in the field of nanotechnology. The overall performance of QCA is high compared to traditional complementary metal-oxide semiconductor (CMOS) technology. To achieve data security during nanocommunication, a cryptography-based application is proposed. The devised circuit encrypts the input data and passes it to an output channel through a nanorouter cum data path selector, where the data is decrypted back to its original form. The results along with theoretical implication prove the accuracy of the circuit. Power dissipation and circuit complexity of the circuit have been analyzed.

Key words

Quantum-dot cellular automata (QCA) Majority gate cryptography Encryption Decryption Nanorouter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmadpour SS, Mosleh M, 2018. A novel fault-tolerant multiplexer in quantum-dot cellular automata technology. J Supercomput, 74(9):4696–4716.  https://doi.org/10.1007/s11227-018-2464-9 CrossRefGoogle Scholar
  2. Angizi S, Sarmadi S, Sayedsalehi S, et al., 2015a. Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectr J, 46(1):43–51.  https://doi.org/10.1016/j.mejo.2014.10.003 CrossRefGoogle Scholar
  3. Angizi S, Moaiyeri MH, Farrokhi S, et al., 2015b. Designing quantum-dot cellular automata counters with energy consumption analysis. Microprocess Microsyst, 39(7):512–520.  https://doi.org/10.1016/j.micpro.2015.07.011 CrossRefGoogle Scholar
  4. Balali M, Rezai A, Balali H, et al., 2017. Towards coplanar quantum-dot cellular automata adders based on efficient three-input XOR gate. Results Phys, 7:1389–1395.  https://doi.org/10.1016/j.rinp.2017.04.005 CrossRefzbMATHGoogle Scholar
  5. Das JC, De D, 2012. Quantum dot-cellular automata based cipher text design for nano-communication. Proc Int Confon Radar, Communication and Computing, p.224–229.  https://doi.org/10.1109/ICRCC.2012.6450583
  6. Das JC, De D, 2016a. Novel low power reversible binary incrementer design using quantum-dot cellular automata. Microprocess Microsyst, 42:10–23.  https://doi.org/10.1016/j.micpro.2015.12.004 CrossRefGoogle Scholar
  7. Das JC, De D, 2016b. Quantum-dot cellular automata based reversible low power parity generator and parity checker design for nanocommunication. Front Inform Technol Electron Eng, 17(3):224–236.  https://doi.org/10.1631/FITEE.1500079 CrossRefGoogle Scholar
  8. Das JC, De D, 2017a. Circuit switching with quantum-dot cellular automata. Nano Commun Netw, 14:16–28.  https://doi.org/10.1016/j.nancom.2017.09.002 CrossRefGoogle Scholar
  9. Das JC, De D, 2017b. Nanocommunication network design using QCA reversible crossbar switch. Nano Commun Netw, 13:20–33CrossRefGoogle Scholar
  10. Das JC, De D, 2017c. Reversible binary subtractor design using quantum dot-cellular automata. Front Inform Technol Electron Eng, 18(9):1416–1429.  https://doi.org/10.1631/FITEE.1600999 CrossRefGoogle Scholar
  11. Das JC, De D, 2017d. Operational efficiency of novel SISO shift register under thermal randomness in quantum-dot cellular automata design. Microsyst Technol, 23(9):4155–4168.  https://doi.org/10.1007/s00542-016-3085-y CrossRefGoogle Scholar
  12. Das S, De D, 2012. Nanocommunication using QCA: a data path selector cum router for efficient channel utilization. Proc Int Conf on Radar, Communication and Computing, p.43–47.  https://doi.org/10.1109/ICRCC.2012.6450545
  13. Debnath B, Das JC, De D, 2017. Reversible logic-based image steganography using quantum dot cellular automata for secure nanocommunication. IET Circ Dev Syst, 11(1):58–67.  https://doi.org/10.1049/iet-cds.2015.0245 CrossRefGoogle Scholar
  14. Debnath B, Das JC, De D, 2018. Design of image steganographic architecture using quantum-dot cellular automata for secure nanocommunication networks. Nano Commun Netw, 15:41–58.  https://doi.org/10.1016/j.nancom.2017.11.001 CrossRefGoogle Scholar
  15. Delfs H, Knebl H, 2015. Symmetric-key cryptography. In: Delfs H, Knebl H (Eds.), Introduction to Cryptography. Springer Berlin Heidelberg.  https://doi.org/10.1007/978-3-662-47974-2_2 Google Scholar
  16. Heikalabad SR, Asfestani MN, Hosseinzadeh M, 2018. A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis. J Supercomput, 74(5):1994–2005.  https://doi.org/10.1007/s11227-017-2206-4 CrossRefGoogle Scholar
  17. Iqbal J, Khanday FA, Shah NA, 2013. Design of quantum-dot cellular automata (QCA) based modular 2n-1-2n MUX-DEMUX. Proc IMPACT, p.189–193.  https://doi.org/10.1109/MSPCT.2013.6782116
  18. Kahate A, 2008. Cryptography and Network Security. Tata McGraw Hill Education, India.Google Scholar
  19. Kamaraj A, Marichamy P, Abinaya M, 2015. Design of reversible logic based area efficient multilayer architecture router in QCA. Int J Appl Eng Res, 10(1):140–144.Google Scholar
  20. Karkaj ET, Heikalabad SR, 2017. Binary to gray and gray to binary converter in quantum-dot cellular automata. Optik, 130:981–989.  https://doi.org/10.1016/j.ijleo.2016.11.087 CrossRefGoogle Scholar
  21. Kianpour M, Sabbaghi-Nadooshan R, Navi K, 2014. A novel design of 8-bit adder/subtractor by quantum-dot cellular automata. J Comput Syst Sci, 80(7):1404–1414.  https://doi.org/10.1016/j.jcss.2014.04.012 MathSciNetCrossRefzbMATHGoogle Scholar
  22. Lent CS, Tougaw PD, 1997. A device architecture for computing with quantum dots. Proc IEEE, 85(4):541–557.  https://doi.org/10.1109/5.573740 CrossRefGoogle Scholar
  23. Lent CS, Tougaw PD, Porod W, et al., 1993. Quantum cellular automata. Nanotechnology, 4(1):49–57.  https://doi.org/10.1088/0957-4484/4/1/004 CrossRefGoogle Scholar
  24. Liu WQ, Srivastava S, Lu L, et al., 2012. Are QCA cryptographic circuits resistant to power analysis attack? IEEE Trans Nanotechnol, 11(6): 1239–1251.  https://doi.org/10.1109/TNANO.2012.2222663 CrossRefGoogle Scholar
  25. Mardiris VA, Karafyllidis IG, 2010. Design and simulation of modular 2n to 1 quantum-dot cellular automata (QCA) multiplexers. Int J Circ Theory Appl, 38(8):771–785.  https://doi.org/10.1002/cta.595 zbMATHGoogle Scholar
  26. Mukhopadhyay D, Dinda S, Dutta P, 2011. Designing and implementation of quantum cellular automata 2:1 multiplexer circuit. Int J Comput Appl, 25(1):21–24.  https://doi.org/10.5120/2996-4026 Google Scholar
  27. Orlov AO, Bernstein AGH, Lent CS, et al., 1997. Realization of a functional cell for quantum-dot cellular automata. Science, 277(5328):928–930.  https://doi.org/10.1126/science.277.5328.928 CrossRefGoogle Scholar
  28. Orlov AO, Kummamuru R, Ramasubramaniam R, et al., 2001. Clocked quantum-dot cellular automata devices: experimental studies. Proc 1st IEEE Conf on Nanotechnology, p.425–430.  https://doi.org/10.1109/NANO.2001.966460
  29. Porod W, 1997. Quantum-dot devices and quantum-dot cellular automata. J Franklin Inst, 334(5–6):1147–1175.  https://doi.org/10.1016/S0016-0032(97)00041-0 CrossRefzbMATHGoogle Scholar
  30. Porod W, Lent C, Bernstein GH, et al., 1999. Quantum-dot cellular automata: computing with coupled quantum dots. Int J Electron, 86(5):549–590.  https://doi.org/10.1080/002072199133265 CrossRefGoogle Scholar
  31. Pudi V, Sridharan K, 2015. A bit-serial pipelined architecture for high-performance DHT computation in quantum-dot cellular automata. IEEE Trans Very Large Scale Integr (VLSI) Syst, 23(10):2352–2356.  https://doi.org/10.1109/TVLSI.2014.2363519 CrossRefGoogle Scholar
  32. Rashidi H, Rezai A, 2017. Design of novel efficient multiplexer architecture for quantum-dot cellular automata. J Nano Electron Phys, 9(1):01012.  https://doi.org/10.21272/jnep.9(1).01012CrossRefGoogle Scholar
  33. Rashidi H, Rezai A, Soltany S, 2016. High-performance multiplexer architecture for quantum-dot cellular automata. J Comput Electron, 15(3):968–981.  https://doi.org/10.1007/s10825-016-0832-3 CrossRefGoogle Scholar
  34. Sardinha LHB, Costa AMM, Neto OPV, et al., 2013. Nano-router: a quantum-dot cellular automata design. IEEE J Sel Areas Commun, 31(12):825–834.  https://doi.org/10.1109/JSAC.2013.SUP2.12130015 CrossRefGoogle Scholar
  35. Sayedsalehi S, Azghadi MR, Angizi S, et al., 2015. Restoring and non-restoring array divider designs in quantum-dot cellular automata. Inform Sci, 311:86–101.  https://doi.org/10.1016/j.ins.2015.03.030 MathSciNetCrossRefGoogle Scholar
  36. Sen B, Dutta M, Sikdar BK, 2014. Efficient design of parity preserving logic in quantum-dot cellular automata targeting enhanced scalability in testing. Microelectr J, 45(2):239–248.  https://doi.org/10.1016/j.mejo.2013.11.008 CrossRefGoogle Scholar
  37. Shah NA, Khanday FA, Bangi ZA, et al., 2011. Design of quantum-dot cellular automata (QCA) based modular 1 to 2n demultiplexers. In J Nanotechnol Appl, 5(1):47–58.  https://doi.org/10.1109/MSPCT.2013.6782116 Google Scholar
  38. Sridharan K, Pudi V, 2015. Design of Arithmetic Circuits in Quantum Dot Cellular Automata Nanotechnology. Springer, Cham, Germany.  https://doi.org/10.1007/978-3-319-16688-9 CrossRefGoogle Scholar
  39. Tougaw PD, Lent CS, 1994. Logical devices implemented using quantum cellular automata. J Appl Phys, 75(3):1818–1825.  https://doi.org/10.1063/1.356375 CrossRefGoogle Scholar
  40. Walus K, Dysart TJ, Jullien GA, et al., 2004. QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol, 3(1):26–31.  https://doi.org/10.1109/TNANO.2003.820815 CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringSwami Vivekananda Institute of Science and TechnologyWest BengalIndia
  2. 2.Department of Computer Science and EngineeringWest Bengal University of TechnologyKolkataIndia

Personalised recommendations