Advertisement

Collaborative learning via social computing

  • Ricardo S. AlonsoEmail author
  • Javier Prieto
  • Óscar García
  • Juan M. Corchado
Article
  • 71 Downloads

Abstract

Educational innovation is a field that has been greatly enriched by using technology in its processes, resulting in a learning model where information comes from numerous sources and collaboration takes place among multiple students. One attractive challenge within educational innovation is the design of collaborative learning activities from the social computing point of view, where collaboration is not limited to student-to-student relationships, but includes student-to-machine interactions. At the same time, there is a great lack of tools that give support to the whole learning process and are not restricted to specific aspects of the educational task. In this paper, we present and evaluate context-aware framework for collaborative learning applications (CAFCLA) as a solution to these problems. CAFCLA is a flexible framework that covers the entire process of developing collaborative learning activities, taking advantage of contextual information and social interactions. Its application in the experimental case study of a collaborative WebQuest within a museum has shown that, among other benefits, the use of social computing improves the learning process, fosters collaboration, enhances relationships, and increases engagement.

Key words

Context-awareness Collaborative learning Social computing Virtual organizations Wireless sensor networks Real time location system 

CLC number

G434 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al Maghayreh E, Samarah S, Alkhateeb F, et al., 2012. A framework for monitoring the execution of distributed multi–agent programs. Int J Adv Sci Technol, 38(1):53–66.Google Scholar
  2. Arif M, Illahi M, Karim A, et al., 2015. An architecture of agent–based multi–layer interactive e–learning and e–testing platform. Qual Quant, 49(6):2435–2458. https://doi.org/10.1007/s11135-014-0121-9 CrossRefGoogle Scholar
  3. Barzilai S, Blau I, 2014. Scaffolding game–based learning: impact on learning achievements, perceived learning, and game experiences. Comput Educ, 70:65–79. https://doi.org/10.1016/j.compedu.2013.08.003 CrossRefGoogle Scholar
  4. Bellifemine F, Poggi A, Rimassa G, 2001. JADE: a FIPA2000 compliant agent development environment. Proc 5th Int Conf on Autonomous Agents, p.216–217. https://doi.org/10.1145/375735.376120 zbMATHGoogle Scholar
  5. Bellifemine FL, Caire G, Greenwood D, 2007. Developing Multi–agent Systems with JADE. John Wiley & Sons Ltd., Hoboken, USA. https://doi.org/10.1002/9780470058411 CrossRefGoogle Scholar
  6. Berjón R, Beato ME, Mateos M, et al., 2015. SCHOM. A tool for communication and collaborative e–learning. Comput Human Behav, 51:1163–1171. https://doi.org/10.1016/j.chb.2015.02.024 Google Scholar
  7. Castro GG, Domínguez EL, Velázquez YH, et al., 2016. MobiLearn: context–aware mobile learning system. IEEE Latin Am Trans, 14(2):958–964. https://doi.org/10.1109/TLA.2016.7437246 CrossRefGoogle Scholar
  8. Chen CH, Chou MH, 2015. Enhancing middle school students’ scientific learning and motivation through agent–based learning. J Comput Assist Learn, 31(5):481–492. https://doi.org/10.1111/jcal.12094 CrossRefGoogle Scholar
  9. Chou TL, Chanlin LJ, 2014. Location–based learning through augmented reality. J Educ Comput Res, 51(3):355–368. https://doi.org/10.2190/EC.51.3.e CrossRefGoogle Scholar
  10. Chuang HH, 2016. Leveraging CRT awareness in creating web–based projects through use of online collaborative learning for pre–service teachers. Educ Technol Res Dev, 64(4):857–876. https://doi.org/10.1007/s11423-016-9438-5 MathSciNetCrossRefGoogle Scholar
  11. Cox MJ, 2013. Formal to informal learning with IT: research challenges and issues for e–learning. J Comput Assist Learn, 29(1):85–105. https://doi.org/10.1111/j.1365-2729.2012.00483.x CrossRefGoogle Scholar
  12. Crawford L, Higgins KN, Huscroft–D’Angelo JN, et al., 2016. Students’ use of electronic support tools in mathematics. Educ Technol Res Dev, 64(6):1163–1182. https://doi.org/10.1007/s11423-016-9452-7 CrossRefGoogle Scholar
  13. Cress U, Kimmerle J, 2008. A systemic and cognitive view on collaborative knowledge building with wikis. Int J Comput–Support Collab Learn, 3(2):105–122. https://doi.org/10.1007/s11412-007-9035-z CrossRefGoogle Scholar
  14. Dascalu MI, Bodea CN, Moldoveanu A, et al., 2015. A recommender agent based on learning styles for better virtual collaborative learning experiences. Comput Human Behav, 45:243–253. https://doi.org/10.1016/j.chb.2014.12.027 CrossRefGoogle Scholar
  15. de Marziani C, Ureña J, Hernandez Á, et al., 2009. Acoustic sensor network for relative positioning of nodes. Sensors, 9(11):8490–8507. https://doi.org/10.3390/s91108490 CrossRefGoogle Scholar
  16. Dey AK, 2001. Understanding and using context. Pers Ubiq Comput, 5(1):4–7. https://doi.org/10.1007/s007790170019 CrossRefGoogle Scholar
  17. Enembreck F, Barthès JPA, 2013. A social approach for learning agents. Expert Syst Appl, 40(5):1902–1916. https://doi.org/10.1016/j.eswa.2012.10.008 CrossRefGoogle Scholar
  18. Erickson T, Kellogg WA, 2000. Social translucence: an approach to designing systems that support social processes. ACM Trans Comput–Human Int, 7(1):59–83. https://doi.org/10.1145/344949.345004 CrossRefGoogle Scholar
  19. Fermoso AM, Mateos M, Beato ME, et al., 2015. Open linked data and mobile devices as e–tourism tools. A practical approach to collaborative e–learning. Comput Human Behav, 51:618–626. https://doi.org/10.1016/j.chb.2015.02.032 Google Scholar
  20. García Ó, Tapia DI, Alonso RS, et al., 2012. Ambient intelligence and collaborative e–learning: a new definition model. J Amb Intell Hum Comput, 3(3):239–247. https://doi.org/10.1007/s12652-011-0050-6 CrossRefGoogle Scholar
  21. García–Floriano A, Ferreira–Santiago A, Yáñez–Márquez C, et al., 2017. Social web content enhancement in a distance learning environment: intelligent metadata generation for resources. Int Rev Res Open Dist Learn, 18(1):161–176. https://doi.org/10.19173/irrodl.v18i1.2646 Google Scholar
  22. Garrido A, Morales L, Serina I, 2016. On the use of case–based planning for e–learning personalization. Expert Syst Appl, 60:1–15. https://doi.org/10.1016/j.eswa.2016.04.030 CrossRefGoogle Scholar
  23. Hwang GJ, Wu PH, 2014. Applications, impacts and trends of mobile technology–enhanced learning: a review of 2008–2012 publications in selected SSCI journals. Int J Mob Learn Organ, 8(2):83–95. https://doi.org/10.1504/IJMLO.2014.062346 CrossRefGoogle Scholar
  24. Jin X, Gallagher A, Cao LL, et al., 2010. The wisdom of social multimedia: using flickr for prediction and forecast. Proc 18th ACM Int Conf on Multimedia, p.1235–1244. https://doi.org/10.1145/1873951.1874196 CrossRefGoogle Scholar
  25. Jung JJ, 2009. Social grid platform for collaborative online learning on blogosphere: a case study of eLearning@ BlogGrid. Expert Syst Appl, 36(2):2177–2186. https://doi.org/10.1016/j.eswa.2007.12.018 CrossRefGoogle Scholar
  26. Kirschner PA, Kreijns K, Phielix C, et al., 2015. Awareness of cognitive and social behaviour in a CSCL environment. J Comput Assist Learn, 31(1):59–77. https://doi.org/10.1111/jcal.12084 CrossRefGoogle Scholar
  27. Laine TH, Joy M, 2009. Survey on context–aware pervasive learning environments. Int J Int Mob Technol, 3(1):70–76. https://doi.org/10.3991/ijim.v3i1.680 Google Scholar
  28. Land SM, Zimmerman HT, 2015. Socio–technical dimensions of an outdoor mobile learning environment: a three–phase design–based research investigation. Educ Technol Res Dev, 63(2):229–255. https://doi.org/10.1007/s11423-015-9369-6 CrossRefGoogle Scholar
  29. Lin JW, Mai LJ, Lai YC, 2015. Peer interaction and social network analysis of online communities with the support of awareness of different contexts. Int J Comput–Support Collab Learn, 10(2):139–159. https://doi.org/10.1007/s11412-015-9212-4 Google Scholar
  30. Linden G, Smith B, York J, 2003. Amazon.com recommendations: item–to–item collaborative filtering. IEEE Int Comput, 7(1):76–80. https://doi.org/10.1109/MIC.2003.1167344 CrossRefGoogle Scholar
  31. López–Yáñez I, Yáñez–Márquez C, Camacho–Nieto O, et al., 2015. Collaborative learning in postgraduate level courses. Comput Human Behav, 51:938–944. https://doi.org/10.1016/j.chb.2014.11.055 CrossRefGoogle Scholar
  32. Luna V, Quintero R, Torres M, et al., 2015. An ontology–based approach for representing the interaction process between user profile and its context for collaborative learning environments. Comput Human Behav, 51:1387–1394. https://doi.org/10.1016/j.chb.2014.10.004 CrossRefGoogle Scholar
  33. Marin–Perianu M, Meratnia N, Havinga P, et al., 2007. Decentralized enterprise systems: a multiplatform wireless sensor network approach. IEEE Wirel Commun, 14(6):57–66. https://doi.org/10.1109/MWC.2007.4407228 CrossRefGoogle Scholar
  34. Masud M, 2016. Collaborative e–learning systems using semantic data interoperability. Comput Human Behav, 61: 127–135. https://doi.org/10.1016/j.chb.2016.02.094 CrossRefGoogle Scholar
  35. Melero J, Hernández–Leo D, Manatunga K, 2015. Groupbased mobile learning: do group size and sharing mobile devices matter? Comput Human Behav, 44:377–385. https://doi.org/10.1016/j.chb.2014.11.078 CrossRefGoogle Scholar
  36. Mora HM, Pont MTS, de Miguel Casado G, et al., 2015. Management of social networks in the educational process. Comput Human Behav, 51:890–895. https://doi.org/10.1016/j.chb.2014.11.010 CrossRefGoogle Scholar
  37. Musser D, Wedman J, Laffey J, 2003. Social computing and collaborative learning environments. Proc 3rd IEEE Int Conf on Advanced Technologies, p.520–521. https://doi.org/10.1109/ICALT.2003.1215223 Google Scholar
  38. Nebusens, 2018. n-Core®: a faster and easier way to create wireless sensor networks. http://www.n-core.info Google Scholar
  39. Novak E, 2015. A critical review of digital storyline–enhanced learning. Educ Technol Res Dev, 63(3):431–453. https://doi.org/10.1007/s11423-015-9372-y CrossRefGoogle Scholar
  40. Parameswaran M, Whinston AB, 2007. Research issues in social computing. J Assoc Inform Syst, 8(6):336–350.Google Scholar
  41. Prieto J, Mazuelas S, Bahillo A, et al., 2012. Adaptive data fusion for wireless localization in harsh environments. IEEE Trans Signal Process, 60(4):1585–1596. https://doi.org/10.1109/TSP.2012.2183126 MathSciNetzbMATHCrossRefGoogle Scholar
  42. Prieto J, de Paz JF, Villarrubia G, et al., 2015. Unified fingerprinting/ ranging localization in harsh environments. Int J Distr Sens Networks, 11(11):1–11. https://doi.org/10.1155/2015/479765 Google Scholar
  43. Prieto J, Mazuelas S, Win MZ, 2016. Context–aided inertial navigation via belief condensation. IEEE Trans Signal Process, 64(12):3250–3261. https://doi.org/10.1109/tsp.2016.2515065 MathSciNetzbMATHCrossRefGoogle Scholar
  44. Robertson D, Giunchiglia F, 2013. Programming the social computer. Phil Trans A, 371(1987):20120379. https://doi.org/10.1098/rsta.2012.0379 MathSciNetzbMATHCrossRefGoogle Scholar
  45. Rodríguez S, Julián V, Bajo J, et al., 2011. Agent–based virtual organization architecture. Eng Appl Artif Intell, 24(5): 895–910. https://doi.org/10.1016/j.engappai.2011.02.003 CrossRefGoogle Scholar
  46. Roschelle J, 2003. Keynote paper: unlocking the learning value of wireless mobile devices. J Comput Assist Learn, 19(3):260–272. https://doi.org/10.1046/j.0266-4909.2003.00028.x CrossRefGoogle Scholar
  47. Ryokai K, Farzin F, Kaltman E, et al., 2013. Assessing multiple object tracking in young children using a game. Educ Technol Res Dev, 61(2):153–170. https://doi.org/10.1007/s11423-012-9278-x CrossRefGoogle Scholar
  48. Schroeder A, Minocha S, Schneider C, 2010. The strengths, weaknesses, opportunities and threats of using social software in higher and further education teaching and learning. J Comput Assist Learn, 26(3):159–174. https://doi.org/10.1111/j.1365-2729.2010.00347.x CrossRefGoogle Scholar
  49. Schuler D, 1994. Social computing. Commun ACM, 37(1):28–29. https://doi.org/10.1145/175222.175223 CrossRefGoogle Scholar
  50. Shadbolt N, 2013. Knowledge acquisition and the rise of social machines. Int J Hum–Comput Stud, 71(2):200–205. https://doi.org/10.1016/j.ijhcs.2012.10.008 CrossRefGoogle Scholar
  51. Sinha S, Rogat TK, Adams–Wiggins KR, et al., 2015. Collaborative group engagement in a computer–supported inquiry learning environment. Int J Comput–Support Collab Learn, 10(3):273–307. https://doi.org/10.1007/s11412-015-9218-y CrossRefGoogle Scholar
  52. Sun G, Shen J, 2014. Facilitating social collaboration in mobile cloud–based learning: a teamwork as a service (TaaS) approach. IEEE Trans Learn Technol, 7(3):207–220. https://doi.org/10.1109/TLT.2014.2340402 CrossRefGoogle Scholar
  53. Villarrubia G, de Paz JF, Bajo J, et al., 2014. Ambient agents: embedded agents for remote control and monitoring using the PANGEA platform. Sensors, 14(8):13955–13979. https://doi.org/10.3390/s140813955 CrossRefGoogle Scholar
  54. von Ahn L, Blum M, Langford J, 2004. Telling humans and computers apart automatically. Commun ACM, 47(2):56–60. https://doi.org/10.1145/966389.966390 CrossRefGoogle Scholar
  55. Wang FY, Carley KM, Zeng D, et al., 2007. Social computing: from social informatics to social intelligence. IEEE Intell Syst, 22(2):79–83. https://doi.org/10.1109/MIS.2007.41 CrossRefGoogle Scholar
  56. Zampella F, Bahillo A, Prieto J, et al., 2013. Pedestrian navigation fusing inertial and RSS/TOF measurements with adaptive movement/measurement models: experimental evaluation and theoretical limits. Sens Actuat A, 203:249–260. https://doi.org/10.1016/j.sna.2013.08.028 CrossRefGoogle Scholar
  57. Zhang YQ, Zhang PL, 2015. Machine training and parameter settings with social emotional optimization algorithm for support vector machine. Patt Recogn Lett, 54:36–42. https://doi.org/10.1016/j.patrec.2014.11.011 CrossRefGoogle Scholar
  58. Zhao K, Chan CKK, 2014. Fostering collective and individual learning through knowledge building. Int J Comput–Support Collab Learn, 9(1):63–95. https://doi.org/10.1007/s11412-013-9188-x CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.BISITE Research Group, University of SalamancaEdificio I+D+i, C/EspejoSalamancaSpain

Personalised recommendations