Advertisement

Effect of wind stress forcing on ocean dynamics at air-sea interface

  • Hussein Yahia
  • Veronique Garçon
  • Joel Sudre
  • Christophe Maes
Article

Abstract

We evidence and study the differences in turbulence statistics in ocean dynamics carried by wind forcing at the air-sea interface. Surface currents at the air-sea interaction are of crucial importance because they transport heat from low to high latitudes. At first order, oceanic currents are generated by the balance of the Coriolis and pressure gradient forces (geostrophic current) and the balance of the Coriolis and the frictional forces dominated by wind stress (Ekman current) in the surface ocean layers. The study was conducted by computing statistical moments on the shapes of spectra computed within the framework of microcanonical multi-fractal formalism. Remotely sensed daily datasets derived from one year of altimetry and wind data were used in this study, allowing for the computation of two kinds of vector fields: geostrophy with and geostrophy without wind stress forcing. We explore the statistical properties of singularity spectra computed from velocity norms and vorticity data, notably in relation with kurtosis information to underline the differences in the turbulent regimes associated with both kinds of velocity fields.

Key words

Ocean dynamics Remote sensing Turbulence Signal processing Multi-fractal formalism 

CLC number

TP391 

References

  1. Arbic BK, Polzin KL, Scott JG, et al., 2013. On eddy viscosity, energy cascades, and the horizontal resolution of gridded satellite altimeter products. J Phys Oceanogr, 43(2):283–300.  https://doi.org/10.1175/jpo-d-11-0240.1 CrossRefGoogle Scholar
  2. Arneodo A, Bacry E, Muzy JF, 1995. The thermodynamics of fractals revisited with wavelets. Phys A, 213(1–2):232–275.  https://doi.org/10.1016/0378-4371(94)00163-N CrossRefzbMATHGoogle Scholar
  3. Benzi R, Paladin G, Parisi G, et al., 1984. On the multifractal nature of fully developed turbulence and chaotic systems. J Phys A, 17:3521–3531.  https://doi.org/10.1142/9789812799050_0017 MathSciNetCrossRefGoogle Scholar
  4. Boffetta G, Cencini M, Falcioni M, et al., 2002. Predictability: a way to characterize complexity. Phys Rep, 356(6):367–474.  https://doi.org/10.1016/S0370-1573(01)00025-4 MathSciNetCrossRefzbMATHGoogle Scholar
  5. Chelton DB, Ries JC, Haines BJ, et al., 2001. Satellite altimetry. In: Fu LL, Cazenave A (Eds.), Satellite Altimetry and Earth Sciences: a Handbook of Techniques and Applications. Academic Press, London, UK, p.1–122.Google Scholar
  6. Frisch U, 1995. Turbulence: the Legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge, UK.CrossRefzbMATHGoogle Scholar
  7. Garçon VC, Bell TG, Wallace D, et al., 2013. Perspectives and integration in SOLAS Science. In: Liss PS, Johnson MT (Eds.), Ocean-Atmosphere Interactions of Gases and Particles. Springer Berlin Heidelberg, p.247–306.  https://doi.org/10.1007/978-3-642-25643-1_5 Google Scholar
  8. Hernández-Carrasco I, Sudre J, Garçon V, et al., 2015. Reconstruction of super-resolution ocean pCO2 and air-sea fluxes of CO2 from satellite imagery in the southeastern Atlantic. Biogeosciences, 12(17):5229–5245.  https://doi.org/10.5194/bg-12-5229-2015 CrossRefGoogle Scholar
  9. Hernández-Carrasco I, Garçon V, Sudre J, et al., 2018. Increasing the resolution of ocean pCO2 maps in the South Eastern Atlantic Ocean merging multi-fractal satellite-derived ocean variables. IEEE Trans Geosci Remote Sens, in press. https://doi.org/10.1109/TGRS.2018.2840526 Google Scholar
  10. Lee T, Stammer D, Awaji T, et al., 2010. Ocean state estimation for climate research. Proc OceanObs’09: Sustained Ocean Observations and Information for Society, p.1–9. https://doi.org/10.5270/OceanObs09.cwp.55 Google Scholar
  11. Mashayek A, Ferrari R, Merrifield S, et al., 2017. Topographic enhancement of vertical turbulent mixing in the Southern Ocean. Nat Commun, 8:14197.  https://doi.org/10.1038/ncomms14197 CrossRefGoogle Scholar
  12. Parisi G, Frisch U, 1985. On the singularity structure of fully developed turbulence. In: Ghil M, Benzi R, Parisi G (Eds.), Turbulence and Predictability in Geophysical Fluid Dynamics. North Holland, Amsterdam, p.84–87.Google Scholar
  13. She ZS, Leveque E, 1994. Universal scaling laws in fully developed turbulence. Phys Rev Lett, 72(3):336–339.  https://doi.org/10.1103/PhysRevLett.72.336 CrossRefGoogle Scholar
  14. Sudre J, Maes C, Garçon V, 2013. On the global estimates of geostrophic and Ekman surface currents. Limnol Oceanogr: Fluids Environ, 3(1):1–20.  https://doi.org/10.1215/21573689-2071927 CrossRefGoogle Scholar
  15. Turiel A, Pérez-Vicente CJ, Grazzini J, 2006. Numerical methods for the estimation of multi-fractal singularity spectra on sampled data: a comparative study. J Comput Phys, 216(1):362–390.  https://doi.org/10.1016/j.jcp.2005.12.004 MathSciNetCrossRefzbMATHGoogle Scholar
  16. Turiel A, Yahia H, Pérez-Vicente CJ, 2008. Microcanonical multi-fractal formalism—a geometrical approach to multi-fractal systems: Part I. Singularity analysis. J Phys A, 41(1):015501.  https://doi.org/10.1103/PhysRevE.74.061110 MathSciNetCrossRefzbMATHGoogle Scholar
  17. Turiel A, Isern-Fontanet J, Umbert M, 2014. Sensibility to noise of new multi-fractal fusion methods for ocean variables. Nonl Processes Geophys, 21(1):291–301.  https://doi.org/10.5194/npg-21-291-2014 CrossRefGoogle Scholar
  18. Venugopal V, Roux SG, Foufoula-Georgiou E, et al., 2006. Revisiting multi-fractality of high-resolution temporal rainfall using a wavelet-based formalism. Water Resour Res, 42(6):W06D14.  https://doi.org/10.1029/2005WR004489 CrossRefGoogle Scholar
  19. Yahia H, Sudre J, Pottier C, et al., 2010. Motion analysis in oceanographic satellite images using multiscale methods and the energy cascade. Patt Recogn, 43(10):3591–3604.  https://doi.org/10.1016/j.patcog.2010.04.011 CrossRefzbMATHGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Center INRIA Bordeaux - South WestTalenceFrance
  2. 2.CNRS, LEGOS LaboratoryToulouseFrance
  3. 3.Brest University, CNRS, IRD, IFREMER, LOPS, IUEMBrestFrance

Personalised recommendations