Advertisement

Underwater video transceiver designs based on channel state information and video content

  • Rong-xin Zhang
  • Xiao-li Ma
  • De-qing Wang
  • Fei Yuan
  • En Cheng
Article
  • 58 Downloads

Abstract

Underwater hostile channel conditions challenge video transmission designs. The current designs often treat video coding and transmission schemes as individual modules. In this study, we develop an adaptive transceiver with channel state information (CSI) by taking into account the importance of video components and channel conditions. The design is more effective than the traditional ones. However, in practical systems, perfect CSI may not be available. Therefore, we compare the imperfect CSI case with existing schemes, and validate the effectiveness of our design through simulations and measured channels in terms of a better peak signal-to-noise ratio and a higher video structural similarity index.

Key words

Underwater video transmission Transceiver design Imperfect channel state information 

CLC number

TN919.8 

References

  1. Berger CR, Zhou S, Preisig JC, et al., 2010. Sparse channel estimation for multicarrier underwater acoustic communication: from subspace methods to compressed sensing. IEEE Trans Signal Process, 58(3):1708–1721.  https://doi.org/10.1109/TSP.2009.2038424 MathSciNetCrossRefzbMATHGoogle Scholar
  2. Choudhury PN, Sivakumar K, 2017. Trace inequalities for positive semidefinite matrices. Discuss Math Gener Algebra Appl, 37(1):93–94.  https://doi.org/10.7151/dmgaa.1267 MathSciNetCrossRefGoogle Scholar
  3. Cover TM, Thomas JA, 2006. Elements of Information Theory (2nd Ed). Wiley-Interscience, New York, USA.zbMATHGoogle Scholar
  4. Fan B, Wang W, Wu W, et al., 2010. Joint subcarrier and power allocation for uplink relay-enhanced OFDM systems. Int J Commun Syst, 23(11):1366–1381.  https://doi.org/10.1002/dac.1111 CrossRefGoogle Scholar
  5. Gong M, Zhang C, Lu J, et al., 2008. Dynamic resource allocation in high speed mobile OFDMA system. IEEE Int Conf on Communications, p.3335–3339.  https://doi.org/10.1109/ICC.2008.627 Google Scholar
  6. Gupta AK, Nagar DK, 1999. Matrix Variate Distributions. In: Brezis H, Douglas RG, Jeffrey A (Eds.). Chapman and Hall/CRC Press, London, UK.Google Scholar
  7. Hoag DF, Ingle VK, Gaudette RJ, 1997. Low-bit-rate coding of underwater video using wavelet-based compression algorithms. IEEE J Ocean Eng, 22(2):393–400.  https://doi.org/10.1109/48.585958 CrossRefGoogle Scholar
  8. Holla S, Geetha K, 2015. Distributed video coding for underwater acoustic channels. IEEE Int Conf on Computer Graphics, Vision and Information Security, p.77–82.  https://doi.org/10.1109/CGVIS.2015.7449897 Google Scholar
  9. Hu X, Wang D, Lin Y, et al., 2016. Multi-channel time frequency shift keying in underwater acoustic communication. Appl Acoust, 103:54–63.  https://doi.org/10.1016/j.apacoust.2015.10.009 CrossRefGoogle Scholar
  10. Jafar SA, Vishwanath S, Goldsmith A, 2001. Channel capacity and beamforming for multiple transmit and receive antennas with covariance feedback. IEEE Int Conf on Communications, p.2266–2270.  https://doi.org/10.1109/ICC.2001.937059 Google Scholar
  11. Jakubczak S, Katabi D, 2010. SoftCast: one-size-fits-all wireless video. ACM SIGCOMM Comput Commun Rev, 40(4):449–450.  https://doi.org/10.1145/1851275.1851257 CrossRefGoogle Scholar
  12. Kuai X, Sun H, Zhou S, et al., 2016. Impulsive noise mitigation in underwater acoustic OFDM systems. IEEE Trans Veh Technol, 65(10):8190–8202.  https://doi.org/10.1109/TVT.2016.2516539 CrossRefGoogle Scholar
  13. Kumar P, Kumar P, 2016. Performance evaluation of π/4-DQPSK OFDM over underwater acoustic channels. Wirel Pers Commun, 91(3):1137–1152.  https://doi.org/10.1007/s11277-016-3517-0 CrossRefGoogle Scholar
  14. Li B, Zhou S, Huang J, et al., 2008a. Scalable OFDM design for underwater acoustic communications. IEEE Int Conf on Acoustics, Speech and Signal Processing, p.5304–5307.  https://doi.org/10.1109/ICASSP.2008.4518857 Google Scholar
  15. Li B, Zhou S, Stojanovic M, et al., 2008b. Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts. IEEE J Ocean Eng, 33(2):198–209.  https://doi.org/10.1109/joe.2008.920471 CrossRefGoogle Scholar
  16. Li Q, Wang B, Wang W, et al., 2009. An efficient underwater video compression algorithm for underwater acoustic channel transmission. WRI Int Conf on Communications and Mobile Computing, p.211–215.  https://doi.org/10.1109/CMC.2009.107 Google Scholar
  17. Molisch AF, 2012. Wireless Communications (2nd Ed). John Wiley & Sons.Google Scholar
  18. Negahdaripour S, Khamene A, 2000. Motion-based compression of underwater video imagery for the operations of unmanned submersible vehicles. Comput Vis Image Underst, 79(1):162–183.  https://doi.org/10.1006/cviu.2000.0845 CrossRefGoogle Scholar
  19. Ramagiri VK, Jagannatham AK, 2015. Optimal joint OFDM subcarrier, rate and power allocation for video quality maximization in multihop wireless sensor networks. 10th Int Conf on Information, Communications and Signal Processing, p.1–5.  https://doi.org/10.1109/ICICS.2015.7459886 Google Scholar
  20. Ribas J, Sura D, Stojanovic M, 2011. Underwater wireless video transmission for supervisory control and inspection using acoustic OFDM. OCEANS, p.1–9.  https://doi.org/10.1109/Oceans-Spain.2011.6003396 Google Scholar
  21. Ribas-Corbera J, Neuhoff DL, 2001. Optimizing motion-vector accuracy in block-based video coding. IEEE Trans Circ Syst Video Technol, 11(4):497–511.  https://doi.org/10.1109/76.915356 CrossRefGoogle Scholar
  22. Santoso TB, Wirawan I, Hendrantoro G, 2012. Image transmission with OFDM technique in underwater acoustic environment. IEEE 7th Int Conf on Telecommunication Systems, Services, and Applications, p.37–41.  https://doi.org/10.1109/TSSA.2012.6366017 Google Scholar
  23. Scaglione A, Giannakis GB, Barbarossa S, 1999. Redundant filterbank precoders and equalizers I: unification and optimal designs. IEEE Trans Signal Process, 47(7):1988–2006.  https://doi.org/10.1109/78.771047 CrossRefGoogle Scholar
  24. Scaglione A, Stoica P, Barbarossa S, et al., 2002. Optimal designs for space-time linear precoders and decoders. IEEE Trans Signal Process, 50(5):1051–1064.  https://doi.org/10.1109/78.995062 CrossRefGoogle Scholar
  25. Stojanovic M, 2006. Low complexity OFDM detector for underwater acoustic channels. OCEANS, p.1–6.  https://doi.org/10.1109/OCEANS.2006.307057 Google Scholar
  26. Stojanovic M, Preisig J, 2009. Underwater acoustic communication channels: propagation models and statistical characterization. IEEE Commun Mag, 47(1):84–89.  https://doi.org/10.1109/MCOM.2009.4752682 CrossRefGoogle Scholar
  27. Uma B, Geetha K, Prasanna Kumar S, et al., 2014. Simulation of H.264 based real time video encoder for underwater acoustic channel. Int J Curr Eng Technol, 4(3):1715–1718.Google Scholar
  28. Vall LD, Sura D, Stojanovic M, 2011. Towards underwater video transmission. 6th ACM Int Workshop on Underwater Networks, p.1–5.  https://doi.org/10.1145/2076569.2076573 Google Scholar
  29. Vu HN, Kong HY, 2012. Joint subcarrier matching and power allocation in OFDM two-way relay systems. J Commun Netw, 14(3):257–266.  https://doi.org/10.1109/JCN.2012.6253086 CrossRefGoogle Scholar
  30. Wang C, Wang Z, Nooshabadi S, 2014. Signal alignment for secure underwater coordinated multipoint transmissions. IEEE Conf on Communications and Network Security, p.145–150.  https://doi.org/10.1109/CNS.2014.6997480 Google Scholar
  31. Wang H, Cai W, Yang J, et al., 2015. Design of HD video surveillance system for deep-sea biological exploration. IEEE 16th Int Conf on Communication Technology, p.908–911.  https://doi.org/10.1109/ICCT.2015.7399971 Google Scholar
  32. Wang W, Yang S, Gao L, 2008. Comparison of schemes for joint subcarrier matching and power allocation in OFDM decode-and-forward relay system. IEEE Int Conf on Communications, p.4983–4987.  https://doi.org/10.1109/ICC.2008.934 Google Scholar
  33. Wang Z, Lu L, Bovik AC, 2004. Video quality assessment based on structural distortion measurement. Signal Process Image Commun, 19(2):121–132.  https://doi.org/10.1016/s0923-5965(03)00076-6 CrossRefGoogle Scholar
  34. Zhang R, Kong Y, Ma X, et al., 2018. Adaptive video transmission designs over underwater acoustic channels. Int Conf on Computing, Networking, and Communication, p.1–5.  https://doi.org/10.1109/ICCNC.2018.8390290 Google Scholar
  35. Zhang Y, Negahdaripour S, Li Q, 2016a. Error-resilient coding for underwater video transmission. MTS/IEEE OCEANS Monterey, p.1–7.  https://doi.org/10.1109/OCEANS.2016.7761300 Google Scholar
  36. Zhang Y, Negahdaripour S, Li Q, 2016b. Low bit-rate compression of underwater imagery based on adaptive hybrid wavelets and directional filter banks. Signal Process Image Commun, 47:96–114.  https://doi.org/10.1016/j.image.2016.06.001 CrossRefGoogle Scholar
  37. Zhang Z, Liu D, Ma X, et al., 2017. ECast: an enhanced video transmission design for wireless multicast systems over fading channels. IEEE Syst J, 11(4):2566–2577.  https://doi.org/10.1109/JSYST.2015.2438071 CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MOE Key Laboratory of Underwater Acoustic Communication and Marine Information TechnologyXiamen UniversityXiamenChina
  2. 2.Department of Communication EngineeringXiamen UniversityXiamenChina
  3. 3.School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations