Advertisement

Energy-efficient localization and target tracking via underwater mobile sensor networks

  • Hua-yan Chen
  • Mei-qin Liu
  • Sen-lin Zhang
Article
  • 61 Downloads

Abstract

Underwater mobile sensor networks (UMSNs) with free-floating sensors are more suitable for understanding the immense underwater environment. Target tracking, whose performance depends on sensor localization accuracy, is one of the broad applications of UMSNs. However, in UMSNs, sensors move with environmental forces, so their positions change continuously, which poses a challenge on the accuracy of sensor localization and target tracking. We propose a high-accuracy localization with mobility prediction (HLMP) algorithm to acquire relatively accurate sensor location estimates. The HLMP algorithm exploits sensor mobility characteristics and the multi-step Levinson-Durbin algorithm to predict future positions. Furthermore, we present a simultaneous localization and target tracking (SLAT) algorithm to update sensor locations based on measurements during the process of target tracking. Simulation results demonstrate that the HLMP algorithm can improve localization accuracy significantly with low energy consumption and that the SLAT algorithm can further decrease the sensor localization error. In addition, results prove that a better localization accuracy will synchronously improve the target tracking performance.

Key words

Underwater mobile sensor networks Energy-efficient Sensor localization Target tracking 

CLC number

TP274 

Notes

Acknowledgements

We would like to thank Professor Qun-fei ZHANG from School of Marine Science and Technology, Northwestern Polytechnical University, for his advice on simulation design.

References

  1. Aggarwal P, Wang X, 2011. Joint sensor localisation and target tracking in sensor networks. IET Radar Sonar Navig, 5(3):225–233.  https://doi.org/10.1049/iet-rsn.2010.0118 CrossRefGoogle Scholar
  2. Arasaratnam I, Haykin S, 2009. Cubature Kalman filters. IEEE Trans Autom Contr, 54(6):1254–1269.  https://doi.org/10.1109/TAC.2009.2019800 MathSciNetCrossRefzbMATHGoogle Scholar
  3. Austin TC, Stokey RP, Sharp KM, 2000. Paradigm: a buoy-based system for AUV navigation and tracking. OCEANS MTS/IEEE Conf and Exhibition, p.935–938.  https://doi.org/10.1109/OCEANS.2000.881376 Google Scholar
  4. Beerens SP, Ridderinkhof H, Zimmerman JTF, 1994. An analytical study of chaotic stirring in tidal areas. Chaos Sol Fract, 4(6):1011–1029.  https://doi.org/10.1016/0960-0779(94)90136-8 CrossRefzbMATHGoogle Scholar
  5. Bhardwaj M, Chandrakasan AP, 2002. Bounding the lifetime of sensor networks via optimal role assignments. 21st Annual Joint Conf of the IEEE Computer and Communications Societies, p.1587–1596.  https://doi.org/10.1109/INFCOM.2002.1019410 Google Scholar
  6. Brockwell PJ, Dahlhaus R, 2004. Generalized Levinson-Durbin and Burg algorithms. J Econom, 118(1–2):129–149.  https://doi.org/10.1016/S0304-4076(03)00138-6 MathSciNetCrossRefzbMATHGoogle Scholar
  7. Calafate CT, Lino C, Diaz-Ramirez A, et al., 2013. An integral model for target tracking based on the use of a WSN. Sensors, 13(6):7250–7278.  https://doi.org/10.3390/s130607250 CrossRefGoogle Scholar
  8. Chen HY, Zhang SL, Liu MQ, et al., 2017. An artificial measurements-based adaptive filter for energy-efficient target tracking via underwater wireless sensor networks. Sensors, 17(5):971.  https://doi.org/10.3390/s17050971 CrossRefGoogle Scholar
  9. Cui JH, Kong JJ, Gerla M, et al., 2006. The challenges of building mobile underwater wireless networks for aquatic applications. IEEE Netw, 20(3):12–18.  https://doi.org/10.1109/MNET.2006.1637927 CrossRefGoogle Scholar
  10. Del Moral P, 1997. Nonlinear filering: interacting particle resolution. Compt Rend Acad Sci Ser I-Math, 325(6):653–658.  https://doi.org/10.1016/S0764-4442(97)84778-7 zbMATHGoogle Scholar
  11. Guo Y, Liu YT, 2013. Localization for anchor-free underwater sensor networks. Comput Electr Eng, 39(6):1812–1821.  https://doi.org/10.1016/j.compeleceng.2013.02.001 CrossRefGoogle Scholar
  12. Isbitiren G, Akan OB, 2011. Three-dimensional underwater target tracking with acoustic sensor networks. IEEE Trans Veh Technol, 60(8):3897–3906.  https://doi.org/10.1109/TVT.2011.2163538 CrossRefGoogle Scholar
  13. Kantas N, Singh SS, Doucet A, 2012. Distributed maximum likelihood for simultaneous self-localization and tracking in sensor networks. IEEE Trans Signal Process, 60(10):5038–5047.  https://doi.org/10.1109/TSP.2012.2205923 MathSciNetCrossRefzbMATHGoogle Scholar
  14. Kim S, Yoo Y, 2013. High-precision and practical localization using seawater movement pattern and filters in underwater wireless networks. IEEE 16th Int Conf on Computational Science and Engineering, p.374–381.  https://doi.org/10.1109/CSE.2013.64 Google Scholar
  15. Kussat NH, Chadwell CD, Zimmerman R, 2005. Absolute positioning of an autonomous underwater vehicle using GPS and acoustic measurements. IEEE J Ocean Eng, 30(1):153–164.  https://doi.org/10.1109/JOE.2004.835249 CrossRefGoogle Scholar
  16. Li WL, Jia YM, Du JP, et al., 2013. Distributed multiple-model estimation for simultaneous localization and tracking with NOLS mitigation. IEEE Trans Veh Technol, 62(6):2824–2830.  https://doi.org/10.1109/TVT.2013.2247073 CrossRefGoogle Scholar
  17. Lloret J, 2013. Underwater sensor nodes and networks. Sensors, 13(9):11782–11796.  https://doi.org/10.3390/s130911782 CrossRefGoogle Scholar
  18. Mandal AK, Misra S, Ojha T, et al., 2017. Oceanic forces and their impact on the performance of mobile underwater acoustic sensor networks. Int J Commun Syst, 30(1):e2882.  https://doi.org/10.1002/dac.2882 CrossRefGoogle Scholar
  19. Pardey J, Roberts S, Tarassenko L, 1996. A review of parametric modelling techniques for EEG analysis. Med Eng Phys, 18(1):2–11.  https://doi.org/10.1016/1350-4533(95)00024-0 CrossRefGoogle Scholar
  20. Sozer EM, Stojanovic M, Proakis JG, 2000. Underwater acoustic networks. IEEE J Ocean Eng, 25(1):72–83.  https://doi.org/10.1109/48.820738 CrossRefGoogle Scholar
  21. Teng J, Snoussi H, Richard C, et al., 2012. Distributed variational filtering for simultaneous sensor localization and target tracking in wireless sensor networks. IEEE Trans Veh Technol, 61(5):2305–2318.  https://doi.org/10.1109/TVT.2012.2190631 CrossRefGoogle Scholar
  22. Wang X, Xu MX, Wang HB, et al., 2012. Combination of interacting multiple models with the particle filter for three-dimensional target tracking in underwater wireless sensor networks. Math Probl Eng, 2012:829451.  https://doi.org/10.1155/2012/829451 MathSciNetzbMATHGoogle Scholar
  23. Yu CH, Choi JW, 2014. Interacting multiple model filter-based distributed target tracking algorithm in underwater wireless sensor networks. Int J Contr Autom Syst, 12(3):618–627.  https://doi.org/10.1007/s12555-013-0238-y CrossRefGoogle Scholar
  24. Zhang Q, Liu MQ, Zhang SL, 2015. Node topology effect on target tracking based on UWSNs using quantized measurements. IEEE Trans Cybern, 45(10):2323–2335.  https://doi.org/10.1109/TCYB.2014.2371232 CrossRefGoogle Scholar
  25. Zhou XC, Shen HB, Ye JP, 2011. Integrating outlier filtering in large margin training. J Zhejiang Univ-Sci C (Comput & Electron), 12(5):362–370.  https://doi.org/10.1631/jzus.C1000361 CrossRefGoogle Scholar
  26. Zhu YM, You ZS, Zhao J, et al., 2001. The optimality for the distributed Kalman filtering fusion with feedback. Automatica, 37(9):1489–1493.  https://doi.org/10.1016/S0005-1098(01)00074-7 CrossRefzbMATHGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Industrial Control TechnologyZhejiang UniversityHangzhouChina
  2. 2.College of Electrical EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations