Advertisement

RETRACTED ARTICLE: Dynamic stability enhancement of interconnected multi-source power systems using hierarchical ANFIS controller-TCSC based on multi-objective PSO

  • Ali Darvish FalehiEmail author
  • Ali Mosallanejad
Article

Abstract

Suppression of the dynamic oscillations of tie-line power exchanges and frequency in the affected interconnected power systems due to loading-condition changes has been assigned as a prominent duty of automatic generation control (AGC). To alleviate the system oscillation resulting from such load changes, implementation of flexible AC transmission systems (FACTSs) can be considered as one of the practical and effective solutions. In this paper, a thyristor-controlled series compensator (TCSC), which is one series type of the FACTS family, is used to augment the overall dynamic performance of a multi-area multi-source interconnected power system. To this end, we have used a hierarchical adaptive neuro-fuzzy inference system controller-TCSC (HANFISC-TCSC) to abate the two important issues in multi-area interconnected power systems, i.e., low-frequency oscillations and tie-line power exchange deviations. For this purpose, a multi-objective optimization technique is inevitable. Multi-objective particle swarm optimization (MOPSO) has been chosen for this optimization problem, owing to its high performance in untangling non-linear objectives. The efficiency of the suggested HANFISC-TCSC has been precisely evaluated and compared with that of the conventional MOPSO-TCSC in two different multi-area interconnected power systems, i.e., two-area hydro-thermal-diesel and three-area hydro-thermal power systems. The simulation results obtained from both power systems have transparently certified the high performance of HANFISC-TCSC compared to the conventional MOPSO-TCSC.

Key words

Hierarchical adaptive neuro-fuzzy inference system controller (HANFISC) Thyristor-controlled series compensator (TCSC) Automatic generation control (AGC) Multi-objective particle swarm optimization (MOPSO) Power system dynamic stability Interconnected multi-source power systems 

CLC number

TM76 TP391 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abd-Elazim, S.M., Ali, E.S., 2016. Load frequency controller design via BAT algorithm for nonlinear interconnected power system. Int. J. Electr. Power Energy Syst., 77: 166–177. http://dx.doi.org/10.1016/j.ijepes.2015.11.029CrossRefGoogle Scholar
  2. Abd-Elaziz, A.Y., Ali, E.S., 2015. Cuckoo search algorithm based load frequency controller design for nonlinear interconnected power system. Int. J. Electr. Power Energy Syst., 73: 632–643. http://dx.doi.org/10.1016/j.ijepes.2015.05.050CrossRefGoogle Scholar
  3. Ali, E.S., Abd-Elazim, S.M., 2011. Bacteria foraging optimization algorithm based load frequency controller for interconnected power system. Int. J. Electr. Power Energy Syst., 33(3): 633–638. http://dx.doi.org/10.1016/j.ijepes.2010.12.022CrossRefGoogle Scholar
  4. Ali, E.S., Abd-Elazim, S.M., 2013. BFOA based design of PID controller for two area load frequency control with nonlinearities. Int. J. Electr. Power Energy Syst., 51: 224–231. http://dx.doi.org/10.1016/j.ijepes.2013.02.030CrossRefGoogle Scholar
  5. Benabid, R., Boudour, M., Abido, M.A., 2009. Optimal location and setting of SVC and TCSC devices using non-dominated sorting particle swarm optimization. Electr. Power Syst. Res., 79(12): 1668–1677. http://dx.doi.org/10.1016/j.epsr.2009.07.004CrossRefGoogle Scholar
  6. Benítez, A.D., Casillas, J., 2013. Multi-objective genetic learning of serial hierarchical fuzzy systems for large-scale problems. Soft Comput., 17(1): 165–194. http://dx.doi.org/10.1007/s00500-012-0909-2CrossRefGoogle Scholar
  7. Bevrani, H., Hiyama, T., Mitani, Y., 2008. Power system dynamic stability and voltage regulation enhancement using an optimal gain vector. Contr. Eng. Pract., 16(9): 1109–1119. http://dx.doi.org/10.1016/j.conengprac.2008.01.001CrossRefGoogle Scholar
  8. Cai, L., Erlich, I., 2005. Simultaneous coordinated tuning of PSS and FACTS damping controllers in large power systems. IEEE Trans. Power Syst., 20(1): 294–300. http://dx.doi.org/10.1109/TPWRS.2004.841177CrossRefGoogle Scholar
  9. Chaudhuri, B., Pal, B., 2004. Robust damping of multiple swings modes employing global stabilizing signals with TCSC. IEEE Trans. Power Syst., 19(1): 499–506. http://dx.doi.org/10.1109/TPWRS.2003.821463MathSciNetCrossRefGoogle Scholar
  10. Chaudhuri, B., Pal, B., Zolotas, A.C., 2003. Mixed-sensitivity approach to H∞ control of power system oscillations employing multiple FACTS devices. IEEE Trans. Power Syst., 18(3): 1149–1156. http://dx.doi.org/10.1109/TPWRS.2003.811311CrossRefGoogle Scholar
  11. Dash, P.K., Morris, S., Mishra, S., 2004. Design of a nonlinear variable-gain fuzzy controller for FACTS devices. IEEE Trans. Contr. Syst. Technol., 12(3): 428–438. http://dx.doi.org/10.1109/TCST.2004.824332CrossRefGoogle Scholar
  12. del Rosso, A.D., Canizares, C.A., Dona, V.M., 2003. A study of TCSC controller design for power system stability improvement. IEEE Trans. Power Syst. 18(4): 1487–1496. http://dx.doi.org/10.1109/TPWRS.2003.818703CrossRefGoogle Scholar
  13. Divya, K.C., Nagendra Rao, P.S., 2005. A simulation model for AGC studies of hydro-hydro systems. Int. J. Electr. Power Energy Syst., 27(5–6): 335–342. http://dx.doi.org/10.1016/j.ijepes.2004.12.004CrossRefGoogle Scholar
  14. Eberhart, R.C., Shi, Y.H., Kennedy, J., 2001. Swarm Intelligence. Academic Press, San Diego, CA.Google Scholar
  15. Elshafei, A.L., El-Metwally, K.A., Shaltout, A.A., 2005. A variable-structure adaptive fuzzy-logic stabilizer for single and multi-machine power systems. Contr. Eng. Pract., 13(4): 413–423. http://dx.doi.org/10.1016/j.conengprac.2004.03.017CrossRefGoogle Scholar
  16. Falehi, A.D., 2012. Simultaneous coordinated design of TCSC-based damping controller and AVR based on PSO technique. Electr. Rev., 88(5): 136–140.Google Scholar
  17. Falehi, A.D., 2013. Design and scrutiny of maiden PSS for alleviation of power system oscillations using RCGA and PSO techniques. J. Electr. Eng. Technol., 8(3): 402–410. http://dx.doi.org/10.5370/JEET.2013.8.3.402CrossRefGoogle Scholar
  18. Falehi, A.D., Rostami, M., 2011. Design and analysis of a novel dual-input PSS for damping of power system oscillations employing RCGA-optimization technique. Int. Rev. Electr. Eng., 6(2): 938–945.Google Scholar
  19. Falehi, A.D., Dankoob, A., Amirkhan, S., et al., 2011. Coordinated design of STATCOM-based damping controller and dual-input PSS to improve transient stability of power system. Int. Rev. Electr. Eng., 6(3): 1308–1318.Google Scholar
  20. Falehi, A.D., Rostami, M., Doroudi, A., et al., 2012. Optimization and coordination of SVC-based supplementary controllers and PSSs to improve the power system stability using genetic algorithm. Turk. J. Electr. Eng. Comput. Sci., 20(5): 639–654. http://dx.doi.org/10.3906/elk-1010-838Google Scholar
  21. Goshal, S.P., 2004. Optimization of PID gains by particle swarm optimization in fuzzy based automatic generation control. Electr. Power Syst. Res., 72(3): 203–212. http://dx.doi.org/10.1016/j.epsr.2004.04.004CrossRefGoogle Scholar
  22. Gyugyi, L., 1992. Unified power-flow control concept for flexible AC transmission systems. IEE Proc. C, 139(4): 323–331. http://dx.doi.org/10.1049/ip-c.1992.0048Google Scholar
  23. Gyugyi, L., Schauder, C.D., Sen, K.K., 1997. Static synchronous series compensator: a solid-state approach to the series compensation of transmission lines. IEEE Trans Power Del., 12(1): 406–417. http://dx.doi.org/10.1109/61.568265CrossRefGoogle Scholar
  24. Hingorani, N.G., Gyugyi, L., 2000. Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems. IEEE Press, New York.Google Scholar
  25. Iracleous, D.P., Alexandridis, A.T., 2005. A multi-task automatic generation control for power regulation. Electr. Power Syst. Res., 73(3): 275–285. http://dx.doi.org/10.1016/j.epsr.2004.06.011CrossRefGoogle Scholar
  26. Jang, J.S.R., 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern., 23(3): 665–685. http://dx.doi.org/10.1109/21.256541CrossRefGoogle Scholar
  27. Karnavas, Y.L., Papadopoulos, D.P., 2000. Excitation control of a power-generating system based on fuzzy logic and neural networks. Int. Trans. Electr. Energy Syst., 10(4): 233–241. http://dx.doi.org/10.1002/etep.4450100406Google Scholar
  28. Kazemi, A., Jahed Motlagh, M.R., Naghshbandy, A.H., 2007. Application of a new multi-variable feedback linearization method for improvement of power systems transient stability. Int. J. Electr. Power Energy Syst., 29(4): 322–328. http://dx.doi.org/10.1016/j.ijepes.2006.07.011CrossRefGoogle Scholar
  29. Kikuchi, H., Otake, A., Nakanishi, S., 1998. Functional completeness of hierarchical fuzzy modeling. Inform. Sci., 110(1–2): 51–60. http://dx.doi.org/10.1016/S0020-0255(97)10076-7MathSciNetCrossRefGoogle Scholar
  30. Kundur, P., Klein, M., Rogers, G.J., et al., 1989. Application of power system stabilizers for enhancement of overall system stability. IEEE Trans. Power Syst., 4(2): 614–626. http://dx.doi.org/10.1109/59.193836CrossRefGoogle Scholar
  31. Larsen, E.V., Sanchez-Gasca, J.J., Chow, J.H., 1995. Concepts of design of FACTS controllers to damp power swings. IEEE Trans. Power Syst., 10(2): 948–956. http://dx.doi.org/10.1109/59.387938CrossRefGoogle Scholar
  32. Lee, M.L., Chung, H.Y., Yu, F.M., 2003. Modeling of hierarchical fuzzy systems. Fuzzy Sets Syst., 138(2): 343–361. http://dx.doi.org/10.1016/S0165-0114(02)00517-1MathSciNetCrossRefGoogle Scholar
  33. Li, B.H., Wu, Q.H., Turner, D.R., et al., 2000. Modeling of TCSC dynamics for control and analysis of power system stability. Int. J. Electr. Power Energy Syst., 22(1): 43–49. http://dx.doi.org/10.1016/S0142-0615(99)00037-XCrossRefGoogle Scholar
  34. Mattavelli, P., Verghese, G.C., Stankovic, A.M., 1997. Phasor dynamics of thyristor-controlled series capacitor systems. IEEE Trans. Power Syst., 12(3): 1259–1267. http://dx.doi.org/10.1109/59.630469CrossRefGoogle Scholar
  35. Moradi, A., Shirazi, K.H., Keshavarz, M., et al., 2014. Smart piezoelectric patch in non-linear beam: design, vibration control and optimal location. Trans. Instit. Meas. Contr., 36(1): 131–144. http://dx.doi.org/10.1177/0142331213495041CrossRefGoogle Scholar
  36. Panda, S., Padhy, N.P., 2008. Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design. Appl. Soft Comput., 8(4): 1418–1427. http://dx.doi.org/10.1016/j.asoc.2007.10.009CrossRefGoogle Scholar
  37. Raju, G., Zhou, J., Kisner, R., 1991. Hierarchical fuzzy control. Int. J. Contr., 54(5): 1201–1216. http://dx.doi.org/10.1080/00207179108934205MathSciNetzbMATHCrossRefGoogle Scholar
  38. Rojas, I., Bernier, J.L., Rodriguez-Alvarez, R., et al., 2000. What are the main functional blocks involved in the design of adaptive neuro-fuzzy inference systems? IEEEINNS-ENNS Int. Joint Conf. on Neural Networks, p.551–556. http://dx.doi.org/10.1109/IJCNN.2000.859453Google Scholar
  39. Soliman, H.M., Dabroum, A., Mahmoud, M.S., et al., 2011. Guaranteed-cost reliable control with regional pole placement of a power system. J. Franklin Instit., 348(5): 884–898. http://dx.doi.org/10.1016/j.jfranklin.2011.02.013zbMATHCrossRefGoogle Scholar
  40. Takagi, T., Sugeno, M., 1983. Derivation of fuzzy control rules from human operator’s control actions. IFAC Symp. on Fuzzy Information, Knowledge Representation and Decision Analysis, p.55–60.Google Scholar
  41. Talaat, H.E.A., Abdennour, A., Al-Sulaiman, A.A., 2010. Design and experimental investigation of a decentralized GA-optimized neuro-fuzzy power system stabilizer. Int. J. Electr. Power Energy Syst., 32(7): 751–759. http://dx.doi.org/10.1016/j.ijepes.2010.01.011CrossRefGoogle Scholar
  42. Tan, W., Xu, Z., 2009. Robust analysis and design of load frequency controller for power systems. Electr. Power Syst. Res., 79(5): 846–853. http://dx.doi.org/10.1016/j.epsr.2008.11.005CrossRefGoogle Scholar
  43. Zhang, Y., Zhou, Q., Sun, C.X., et al., 2008. RBF neural network and ANFIS-based short-term load forecasting approach in real-time price environment. IEEE Trans. Power Syst., 23(3): 853–858. http://dx.doi.org/10.1109/TPWRS.2008.922249CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Electrical EngineeringShahid Beheshti UniversityTehranIran

Personalised recommendations