Hardened properties and durability of large-scale 3D printed cement-based materials

Abstract

This study systematically investigates the hardened properties, durability and void distribution of large-scale 3D printed cement-based materials (3DPC). Experimental results indicate that 3DPC has higher compressive and flexural strengths, lower drying shrinkage, better resistance against sulfate attack and carbonation than mold-cast cement-based materials, but lower resistance to frost damage and chloride ion penetration. Computed tomography scanning reveals that voids in 3DPC are strongly oriented along the printing direction. Furthermore, the voids are much more inter-connected and even continuous among the printed filaments. This unique void distribution is the origin of anisotropy for 3DPC and can explain the determined directional dependency of mechanical strengths and durability performance. Along the printing direction, the more connected voids render more channels for gas and liquid to penetrate into 3DPC.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Asprone D, Menna C, Bos FP, Salet TAM, M-Falcon J, Kaufmann W (2018) Rethinking reinforcement for digital fabrication with concrete. Cem Concr Res 112:111–121

    Article  Google Scholar 

  2. 2.

    Buchli J, Dörfler KD, Lussi M, Hack N, Giftthaler M, Sandy T (2018) Digital in situ fabrication-Challenges and opportunities for robotic in situ fabrication in architecture, construction, and beyond. Cem Concr Res 112:66–75

    Article  Google Scholar 

  3. 3.

    Damme HV (2018) Concrete material science: past, present, and future innovations. Cem Concr Res 112:5–24

    Article  Google Scholar 

  4. 4.

    Buswell RA, Leal WR, De Silvab WL, Jonesc SZ, Dirrenberger J (2018) 3D printing using concrete extrusion: a roadmap for research. Cem Concr Res 112:37–49

    Article  Google Scholar 

  5. 5.

    Buswell RA, Soar RC, Gibbb AGF, Thorpe A (2017) Freeform Construction: mega-scale rapid manufacturing for construction. Auto Constr 16:224–231

    Article  Google Scholar 

  6. 6.

    Mohammad S (2020) Khan, florence sanchez b, hongyu zhou, 3-D printing of concrete: beyond horizons. Cem Concr Res 133:4–14

    Google Scholar 

  7. 7.

    Mechtcherine V, Bos FP, Perrot A, Leal da Silva WR, Nerella VN, Fataei S, Wolfs RJM, Sonebi M, Roussel N (2020) Extrusion-based additive manufacturing with cement-based materials–production steps, processes, and their underlying physics: a review. Cem Concr Res 132:106037

    Article  Google Scholar 

  8. 8.

    De G, Schutter K, Lesage V, Mechtcherine VN, Nerella G, Ajuanc Habert I (2018) Vision of 3D printing with concrete—technical, economic and environmental potentials. Cem Concr Res 112:25–36

    Article  Google Scholar 

  9. 9.

    Wangler T, Lloret E, Reiter L, Hack N, Gramazio F, Kohler M, Bernhard M, Dillenburger B, Buchli J, Roussel N, Flatt R (2016) Digital concrete: opportunities and challenges. RILEM Tech Lett 1:67–75

    Article  Google Scholar 

  10. 10.

    Kruger J, van Zijl G (2020) A compendious review on lack-of-fusion in digital concrete fabrication. Addit Manuf

  11. 11.

    Zareiyan B, Khoshnevis B (2017) Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete. Autom Constr 83:212–221

    Article  Google Scholar 

  12. 12.

    Gibbons GJ, Williams R, Purnell P, Farahi E (2013) 3D Printing of cement composites. Adv Appl Ceram 109:287–290

    Article  Google Scholar 

  13. 13.

    Salet TAM, Ahmed ZY, Bos FP, Laagland HLM (2018) Design of a 3D printed concrete bridge by testing. Virtual Phys Prototyp 13:222–236

    Article  Google Scholar 

  14. 14.

    Ju Y, Wang L, Xie HP, Ma GW, Mao LT, Zheng ZM, Lu JB (2017) Visualization of the three-dimensional structure and stress field of aggregated concrete materials through 3D printing and frozen-stress techniques. Constr Build Mater 143:121–137

    Article  Google Scholar 

  15. 15.

    Borg Costanzi C, Ahmed ZY, Schipper HR, Bos FP, Knaack U, Wolfs RJM (2018) 3D printing concrete on temporary surfaces: the design and fabrication of a concrete shell structure. Autom Constr 94:395–404

    Article  Google Scholar 

  16. 16.

    Lu B, Qian Y, Li M, Weng Y, Leong KF, Tan MJ, Qian S (2019) Designing spray-based 3D printable cementitious materials with fly ash cenosphere and air entraining agent. Constr Build Mater 211:1073–1084

    Article  Google Scholar 

  17. 17.

    Lowke D, Dini E, Perrot A, Weger D, Gehlen C, Dillenburger B (2018) Particle-bed 3D printing in concrete construction – possibilities and challenges. Cem Concr Res 112:50–65

    Article  Google Scholar 

  18. 18.

    Salet TAM, Ahmed ZY, Bos FP, Laagland HLM (2018) Design of a 3D printed concrete bridge by testing. Virtual Phys Prototyp 0:1–15

    Google Scholar 

  19. 19.

    S. Cho, J. Kruger, S. Zeranka, A. van Rooyen, G. van Zijl (2019) Mechanical evaluation of 3D printable nano-silica incorporated fiber-reinforced lightweight foam concrete. In: proceedings of the 10th international conference on fracture mechanics of concrete and concrete structures (FRAMCOS-X)

  20. 20.

    Le TT, Austin SA, Lim S, Buswell RA, Law R, Gibb AGF, Thorpe T (2012) Hardened properties of high-performance printing concrete. Cem Concr Res 42:558–566

    Article  Google Scholar 

  21. 21.

    Le TT, Austin SA, Lim S, Buswell RA, Gibb AGF, Thorpe T (2012) Mix design and fresh properties for high-performance printing concrete. Mater Struct 45:1221–1232

    Article  Google Scholar 

  22. 22.

    Panda B, Paul SC, Tan MJ (2017) Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Mater Lett 209:146–149

    Article  Google Scholar 

  23. 23.

    Panda B, Paul SC, Mohamed NAN, Tay YWD, Tan MJ (2018) Measurement of tensile bond strength of 3D printed geopolymer mortar. Measurement 113:108–116

    Article  Google Scholar 

  24. 24.

    Zhang Y, Zhang YS, She W, Yang L, Liu GJ, Yang YG (2019) Rheological and harden properties of the high-thixotropy 3D printing concrete. Constr Build Mater 201:278–285

    Article  Google Scholar 

  25. 25.

    Anleu B, Paula C (2018) Quantitative micro XRF mapping of chlorides: possibilities, limitations, and applications, from cement to digital concrete. Zurich, Switzerland, pp 117–140

    Google Scholar 

  26. 26.

    Zhang Y, Zhang YS, Liu GJ, Yang YG, Wu M, Pang B (2018) Fresh properties of a novel 3D printing concrete ink. Constr Build Mater 174:263–271

    Article  Google Scholar 

  27. 27.

    GB/T 50081–2002 (2003) Standard for test method of mechanical properties on ordinary concrete

  28. 28.

    GB/T 50082–2009 (2010) Standard for test method of long-term performance and durability of ordinary concrete

  29. 29.

    Brue FNG, Davy CA, Burlion N, Skoczylas F, Bourbon X (2017) Five year drying of high performance concretes: effect of temperature and cement-type on shrinkage. Cem Concr Res 99:70–85

    Article  Google Scholar 

  30. 30.

    Havlásek P, Jirásek M (2016) Multiscale modeling of drying shrinkage and creep of concrete. Cem Concr Res 85:55–74

    Article  Google Scholar 

  31. 31.

    Kim G, Kim J-Y, Kurtis KE, Jacobs LJ (2017) Drying shrinkage in concrete assessed by nonlinear ultrasound. Cem Concr Res 92:16–20

    Article  Google Scholar 

  32. 32.

    Shariq M, Prasad J, Abbas H (2016) Creep and drying shrinkage of concrete containing GGBFS. Cem Concr Compos 68:35–45

    Article  Google Scholar 

  33. 33.

    Nehdi ML, Suleiman AR, Soliman AM (2014) Investigation of concrete exposed to dual sulfate attack. Cem Concr Res 64:42–53

    Article  Google Scholar 

  34. 34.

    Malolepszy J, Grabowska E (2015) Sulphate attack resistance of cement with zeolite additive. Procedia Eng 108:170–176

    Article  Google Scholar 

  35. 35.

    TaiIkumi SHP, Cavalaro I (2019) Segura, the role of porosity in external sulphate attack Cem. Concr Compos 97:1–12

    Article  Google Scholar 

  36. 36.

    Benítez P, Rodrigues F, Talukdar S, Gavilán S, Varum H, Spacone E (2019) Analysis of correlation between real degradation data and a carbonation model for concrete structures. Cem Concr Compos 95:247–259

    Article  Google Scholar 

  37. 37.

    Shen XH, Jiang WQ, Hou DS, Hu Z, Yang J, Liu QF (2019) Numerical study of carbonation and its effect on chloride binding in concrete. Cem Concr Compos 104:103402

    Article  Google Scholar 

  38. 38.

    Yang L, Zhang YS, Liu ZY, Zhao P, Liu C (2015) In-situ tracking of water transport in cement paste using X-ray computed tomography combined with CsCl enhancing. Mater Lett 160:381–383

    Article  Google Scholar 

  39. 39.

    Ma GW, Zhang JF, Wang L, Li ZJ, Sun JB (2018) Mechanical characterization of 3D printed anisotropic cementitious material by the electromechanical transducer. Smart Mater Struct 27(7):075036

    Article  Google Scholar 

  40. 40.

    Mechtcherine V, Grafe J, Nerella VN, Spaniol E, Hertel M, Füssel U (2018) 3D-printed steel reinforcement for digital concrete construction–manufacture, mechanical properties and bond behaviour. Constr Build Mater 179:125–137

    Article  Google Scholar 

  41. 41.

    Gosselin C, Duballet R, Roux P, Gaudillière N, Dirrenberger J, Morel P (2016) Large-scale 3D printing of ultra-high performance concrete–a new processing route for architects and builders. Mater Des 100:102–109

    Article  Google Scholar 

  42. 42.

    Zhang ZY, Jin XG, Luo W (2019) Long-term behaviors of concrete under low-concentration sulfate attack subjected to natural variation of environmental climate conditions. Cem Concr Res 116:217–230

    Article  Google Scholar 

  43. 43.

    Tang Z, Li W, Ke G, Zhou JL, Tam VWY (2019) Sulfate attack resistance of sustainable concrete incorporating various industrial solid wastes. J Clean Prod 218:810–822

    Article  Google Scholar 

  44. 44.

    Wolfs RJM, Bos FP, Salet TAM (2019) Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion. Cem Concr Res 119:132–140

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial supports from National Natural Science Foundation of China (51878153 and 51678143), National Basic Research Program of China 973 Program (2015CB655102), National Natural Science Foundation of China (52008284) and Higher Education Institutions (20KJB560004). Support from Centre for Smart Infrastructure and Digital Construction and Faculty of Science, Engineering and Technology, Swinburne University, is appreciated.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yunsheng Zhang or Hongjian Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, Y., Yang, L. et al. Hardened properties and durability of large-scale 3D printed cement-based materials. Mater Struct 54, 45 (2021). https://doi.org/10.1617/s11527-021-01632-x

Download citation

Keywords

  • Additive manufacturing
  • Digital construction
  • Void distribution
  • Layer structure
  • Anisotropy