Predicting the behavior of FRP-strengthened RC membrane elements with efficient rotating-angle softened truss model procedure

Abstract

This article presents an analytical model, based on a refinement of the rotating-angle softened truss model (RA-STM) with efficient solution procedure, to predict the full response of reinforced concrete (RC) membrane elements strengthened with fiber reinforced polymers (FRP). To extend the RA-STM, equations from equilibrium conditions and smeared constitutive relationships for the materials are modified in order to account for the tensile FRP reinforcement and its interactions with the other material components. In addition, an efficient algorithm is proposed for the calculation procedure to avoid using the classical trial and error technique to compute the solution points. This new algorithm provides higher numerical efficiency and stability. The reliability of the efficient RA-STM FRP solution procedure is checked against some experimental data related with FRP-strengthened RC panels tested under in-plane shear and found in the literature, and also with the predictions from the softened membrane model (SMM-FRP) for comparison. In general, reasonably good agreement is observed between the efficient RA-STM FRP procedure and the SMM-FRP, and also with the experimental response of the reference test panels.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

\(A_{{\text{c}}}\) :

Area of concrete cross section

\(A_{{{\text{Tf}}}}\) :

Area of transverse FRP reinforcement

\(A_{{\text{L}}}\) :

Area of longitudinal steel reinforcement

\(A_{{\text{T}}}\) :

Area of transverse steel reinforcement

\(E_{{\text{c}}}\) :

Young’s modulus of concrete

\(E_{{\text{f}}}\) :

Tensile Young’s modulus of FRP reinforcement

\(E_{{\text{S}}}\) :

Young’s modulus of steel reinforcement

\(f^{\prime}_{{\text{c}}}\) :

Uniaxial compressive strength of concrete

\(f_{{{\text{cr}}}}\) :

Tensile strength of concrete

\(f_{{{\text{Lf}}}}\) :

Tensile stress in the longitudinal FRP reinforcement

\(f_{{{\text{Sf}}}}\) :

Tensile stress in the FRP reinforcement

\(f_{{{\text{Tf}}}}\) :

Tensile stress in the transverse FRP reinforcement

\(f_{{{\text{fu}}}}\) :

Ultimate tensile strength of the FRP reinforcement

\(f_{{\text{L}}}\) :

Tensile stress in the longitudinal steel reinforcement

\(f_{{{\text{Ly}}}}\) :

Yielding stress of the longitudinal steel reinforcement

\(f_{{\text{S}}}\) :

Tensile stress of steel reinforcement

\(f_{{{\text{Sy}}}}\) :

Uniaxial yielding stress of steel reinforcement

\(f_{{\text{T}}}\) :

Tensile stress in the transverse steel reinforcement

\(f_{{{\text{Ty}}}}\) :

Yielding stress of the transverse steel reinforcement

\(f^{\prime}_{{\text{y}}}\) :

Apparent yielding stress of the embedded steel rebars

\(K_{{\text{f/s}}}\) :

Factor for FRP/steel stiffness ratio

\(K_{{\text{w}}}\) :

Factor for FRP wrapping scheme

\(k\) :

Index for the step of the calculation procedure

\(k_{{\text{S}}}\) :

Shear stiffness in the cracked stage

\(m_{{\text{L}}}\) :

Longitudinal proportionality coefficient

\(m_{{{\text{LT}}}}\) :

Shear proportionality coefficient

\(m_{{\text{T}}}\) :

Transverse proportionality coefficient

\(\alpha_{2}\) :

Angle of the principal compressive stresses in the FRP-strengthened RC membrane element

\(\alpha_{{\text{D}}}\) :

Angle between the L–T and R–D coordinate systems

\(\Delta \varepsilon_{{\text{D}}}\) :

Path increment for \(\varepsilon_{{\text{D}}}\)

\(\varepsilon_{0}\) :

Strain corresponding to \(f^{\prime}_{{\text{c}}}\)

\(\varepsilon_{{{\text{cr}}}}\) :

Tensile strain corresponding to the tensile strength of concrete

\(\varepsilon_{{{\text{cu}}}}\) :

Ultimate strain for concrete in compression

\(\varepsilon_{{\text{D}}}\) :

Principal compressive strain

\(\varepsilon_{{{\text{Lf}}}}\) :

Strain in the longitudinal FRP reinforcement

\(\varepsilon_{{{\text{Sf}}}}\) :

Strain in the FRP reinforcement

\(\varepsilon_{{{\text{su}}}}\) :

Ultimate strain for steel reinforcement

\(\varepsilon_{{{\text{Tf}}}}\) :

Strain in the transverse FRP reinforcement

\(\varepsilon_{{{\text{fu}}}}\) :

Ultimate strain for FRP reinforcement

\(\varepsilon_{{\text{L}}}\) :

Longitudinal strain

\(\varepsilon_{{{\text{Ly}}}}\) :

Yielding strain of the longitudinal steel reinforcement

\(\varepsilon_{{\text{R}}}\) :

Principal tensile strain

\(\varepsilon_{{\text{S}}}\) :

Strain in the steel reinforcement

\(\varepsilon_{{\text{T}}}\) :

Transverse strain

\(\varepsilon_{{{\text{Ty}}}}\) :

Yielding strain of the transverse steel reinforcement

\(\varepsilon^{\prime}_{{\text{y}}}\) :

Strain corresponding to \(f^{\prime}_{{\text{y}}}\)

\(\gamma_{{{\text{LT}}}}\) :

Shear strain

\(\gamma_{{\text{u}}}\) :

Shear strain corresponding to \(\tau_{{\text{u}}}\)

\(\zeta\) :

Softening coefficient

\(\zeta_{{{\text{FRP}}}}\) :

Softening coefficient accounting for the FRP reinforcement

\(\rho_{{\text{f}}}\) :

FRP reinforcement ratio in the principal direction of tensile stresses

\(\rho_{{\text{L}}}\) :

Longitudinal steel reinforcement ratio

\(\rho_{{{\text{Lf}}}}\) :

Longitudinal FRP reinforcement ratio

\(\rho_{{\text{S}}}\) :

Steel reinforcement ratio

\(\rho_{{{\text{Se}}}}\) :

Steel reinforcement ratio accounting for the FRP reinforcement

\(\rho_{{\text{T}}}\) :

Transverse steel reinforcement ratio

\(\rho_{{{\text{Tf}}}}\) :

Transverse FRP reinforcement ratio

\(\sigma_{1}\) :

Principal tensile stress in the FRP-strengthened RC membrane element

\(\sigma_{2}\) :

Principal compressive stress in the FRP-strengthened RC membrane element

\(\sigma_{{\text{D}}}\) :

Principal compressive stress in the concrete membrane element

\(\sigma_{{\text{L}}}\) :

Longitudinal normal stress in the FRP-strengthened RC membrane element

\(\sigma_{{\text{L}}}^{{\text{c}}}\) :

Longitudinal normal stress in the concrete membrane element

\(\sigma_{{\text{R}}}\) :

Principal tensile strain in the concrete membrane element

\(\sigma_{{\text{T}}}\) :

Transverse normal stress in the FRP-strengthened RC membrane element

\(\sigma_{{\text{T}}}^{{\text{c}}}\) :

Transverse normal stress in the concrete membrane element

\(\tau_{{{\text{cr}}}}\) :

Cracking shear stress

\(\tau_{{{\text{LT}}}}\) :

Shear stress in the FRP-strengthened RC membrane element

\(\tau_{{{\text{LT}}}}^{{\text{c}}}\) :

Shear stress in the concrete membrane element

\(\tau_{{\text{u}}}\) :

Shear strength stress (ultimate)

References

  1. 1.

    ACI Committee 440 (2017) Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. ACI 440.2R-17. American Concrete Institute, Farmington Hills (MI)

  2. 2.

    Task Group fib T5.1 (2019) Externally applied FRP reinforcement for concrete structures. FIB BULLETIN NO. 90. International Federation for Structural Concrete (fib), Lausanne, Switzerland

  3. 3.

    Belarbi A, Bae SW, Ayoub A, Kuchma D, Mirmiran A, Okeil A (2011) Design of FRP systems for strengthening concrete girders in shear. NCHRP Rep. No. 678, Transportation Research Board, Washington, DC

  4. 4.

    Zomorodian M, Belarbi A, Ayoub A (2017) Finite element model for predicting the shear behavior of FRP-strengthened RC members. Eng Struct 153:239–253

    Article  Google Scholar 

  5. 5.

    He R, Sneed LH, Belarbi A (2014) Torsional repair of severely damaged column using carbon fiber-reinforced polymer. ACI Struct J 111(3):705–716

    Google Scholar 

  6. 6.

    Mofidi A, Chaallal O (2014) Effect of steel stirrups on shear resistance gain due to externally bonded fiber-reinforced polymer strips and sheets. ACI Struct J 111:353–361

    Google Scholar 

  7. 7.

    Ganganagoudar A, Mondal TG, Prakash SS (2016) Analytical and finite element studies on behavior of FRP strengthened RC beams under torsion. Compos Struct 153:876–885

    Article  Google Scholar 

  8. 8.

    Baghi H, Barros JA (2016) Shear strengthening of reinforced concrete T-beams with hybrid composite plate. J Compos Constr 20(6):04016036

    Article  Google Scholar 

  9. 9.

    Zomorodian M, Yang G, Belarbi A, Ayoub A (2018) Behavior of FRP-strengthened RC elements subjected to pure shear. Constr Build Mater 170:378–391

    Article  Google Scholar 

  10. 10.

    Hsu TTC, Mo YL (2010) Unified theory of concrete structures. Wiley, London

    Google Scholar 

  11. 11.

    Hsu TTC, Zhang LX, Gomez T (1995) A servo-control system for universal panel tester. J Test Eval 23:424–430

    Article  Google Scholar 

  12. 12.

    Pang XB, Hsu TTC (1995) Behavior of reinforced concrete membrane elements in shear. Struct J Am Concr Insti 92(6):665–679

    Google Scholar 

  13. 13.

    Belarbi A, Hsu TTC (1995) Constitutive laws of softened concrete in biaxial tension-compression. Struct J Am Concr Inst 92(5):562–573

    Google Scholar 

  14. 14.

    Zhang LX, Hsu TTC (1998) Behavior and analysis of 100 MPa concrete membrane elements. J Struct Eng 124(1):24–34

    Article  Google Scholar 

  15. 15.

    Belarbi A, Hsu TTC (1994) Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete. Struct J Am Concr Inst 91(4):465–474

    Google Scholar 

  16. 16.

    Pang XB, Hsu TTC (1996) Fixed-Angle softened truss model of reinforced concrete. Struct J Am Concr Inst 93(2):197–207

    Google Scholar 

  17. 17.

    Hsu TTC, Zhang LX (1997) Nonlinear analysis of membrane elements by fixed-angle softened-truss model. Struct J Am Concr Inst 94(5):483–492

    Google Scholar 

  18. 18.

    Hsu TTC, Zhu RRH (2002) Softened membrane model for reinforced concrete elements in shear. Struct J Am Concr Inst 99(4):460–469

    Google Scholar 

  19. 19.

    Zomorodian M (2015) Behavior of FRP strengthened concrete panel elements subjected to pure shear. Ph.D. Thesis. Faculty of the Department of Civil and Environmental Engineering, University of Houston

  20. 20.

    Yang G, Zomorodian M, Belarbi A, Ayoub A (2015) Uniaxial tensile stress–strain relationships of RC elements strengthened with FRP sheets. J Compos Constr 04015075

  21. 21.

    Yang G, Zomorodian M, Belarbi A (2017) Material laws of FRP-strengthened RC element in biaxial tension–compression. J Compos Constr 04017030

  22. 22.

    Greene GG, Belarbi A (2009) Model for reinforced concrete members under torsion, bending, and shear. I: theory. J Eng Mech 135(9):961–969

  23. 23.

    Silva J, Horowitz B, Bernardo L (2017) Efficient analysis of beam sections using softened truss model. ACI Struct J 114(3):765–774

    Article  Google Scholar 

  24. 24.

    Wong HF, Kuang JS (2014) Predicting shear strength of RC interior beam-column joints by modified rotating-angle softened-truss model. Comput Struct 133:12–17

    Article  Google Scholar 

  25. 25.

    Bernardo LFA, Andrade JMA, Nunes NCG (2015) Generalized softened variable angle truss-model for reinforcement concrete beams under torsion. Mater Struct 48(7):2169–2193

    Article  Google Scholar 

  26. 26.

    Ji T (2005) A new algorithm for the rotating-angle, softened-truss model of reinforced concrete elements. Mag Concr Res 57(6):353–360

    Article  Google Scholar 

  27. 27.

    Bernardo LFA, Filho BMVC, Horowitz B (2020) Predicting the behavior of prestressed concrete membrane elements by refined rotating-angle softened-truss model with efficient solution procedure. Struct Concr. https://doi.org/10.1002/suco.201900481

    Article  Google Scholar 

  28. 28.

    Bernardo LFA, Filho BMVC, Horowitz B (2020) Refined efficient RA-STM procedure for RC membrane elements. Eng Struct. https://doi.org/10.1016/j.engstruct.2020.110552

    Article  Google Scholar 

  29. 29.

    Zhu RRH, Hsu TTC, Lee JY (2001) Rational shear modulus for smeared-crack analysis of reinforced concrete. Struct J Am Concr Inst 98(4):443–450

    Google Scholar 

  30. 30.

    NP EN 1992-1-1 (2010) Eurocode 2: design of concrete structures—part 1: general rules and rules for buildings

  31. 31.

    MathWorks (2018) MATLAB_R2018a

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luís Filipe Almeida Bernardo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bernardo, L.F.A., de Carvalho Filho, B.M.V. & Horowitz, B. Predicting the behavior of FRP-strengthened RC membrane elements with efficient rotating-angle softened truss model procedure. Mater Struct 54, 42 (2021). https://doi.org/10.1617/s11527-021-01631-y

Download citation

Keywords

  • Rotating-angle softened truss model
  • Efficient solution procedure
  • FRP-strengthened RC membranes
  • Shear behavior