Avalanches during flexure of early-age steel fiber reinforced concrete beams


In this work, we studied stress variations occurring during flexure of early-age steel fiber reinforced concrete beams. By preparing beams with different fiber volume ratios, four-point bending tests were performed to evaluate the specimens at different loading rates. A new experimental system was created to collect the stress-time curves collected at 100 kHz sampling rate so that temporal profiles of stress drops were analyzed in high resolution. Meanwhile, stress drops were modeled as avalanches due to interactions between steel fibers and cement matrices during flexure. Good agreement on avalanche statistics and dynamics was obtained between measurements and the predicted power law exponents and scaling functions from the mean field model. The observations of different avalanche types also illustrated the essential failure features evolved during flexure of steel fiber reinforced beams.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. 1.

    Markets Insider (2019) Analysis on the global $652 billion cement and concrete https://markets.businessinsider.com/news/stocks/analysis-on-the-global-652-billion-cement-concrete-market-2019-2022-1028538145. Accessed 20 Feb 2020

  2. 2.

    Technavio (2020) Global concrete and cement report market 2016-2020 https://www.technavio.com/report/global-construction-concrete-and-cement-market. Accessed 20 Feb 2020

  3. 3.

    Afroughsabet V, Biolzi L, Ozbakkaloglu T (2016) High-performance fiber-reinforced concrete: a review. J Mater Sci 51(14):6517–6551

    Google Scholar 

  4. 4.

    Bandelt MJ, Frank TE, Lepech MD, Billington SL (2017) Bond behavior and interface modeling of reinforced high-performance fiber-reinforced cementitious composites. Cem Concr Compos 83:188–201

    Google Scholar 

  5. 5.

    Bolander J Jr, Saito S (1997) Discrete modeling of short-fiber reinforcement in cementitious composites. Adv Cem Based Mater 6(3–4):76–86

    Google Scholar 

  6. 6.

    Qiu J, Yang E-H (2017) Micromechanics-based investigation of fatigue deterioration of engineered cementitious composite (ECC). Cem Concr Res 95:65–74

    Google Scholar 

  7. 7.

    Tan T, Santos SF, Savastano H, Soboyejo W (2012) Fracture and resistance-curve behavior in hybrid natural fiber and polypropylene fiber reinforced composites. J Mater Sci 47(6):2864–2874

    Google Scholar 

  8. 8.

    Li Y, Yang J, Hughes J, Tan T (2019) An experimental study on adhesion between steel and cement pastes using particle probe scanning force microscopy. J Am Ceram Soc 102(3):1347–1361

    Google Scholar 

  9. 9.

    Li Y, Yang J, Tan T (2015) Study on adhesion between asphalt binders and aggregate minerals under ambient conditions using particle-modified atomic force microscope probes. Constr Build Mater 101:159–165

    Google Scholar 

  10. 10.

    Li Y, Yang J, Tan T (2016) Measuring adhesion between modified asphalt binders and aggregate minerals: use of particle probe scanning force microscopes. Transp Res Rec 2574(1):117–123

    Google Scholar 

  11. 11.

    Li Y, Yang J, Tan T (2017) Statistical analyses of aggregate mineral–binder adhesion: measuring with particle probe scanning force microscopes. Transp Res Rec 2632(1):25–31

    Google Scholar 

  12. 12.

    Li Y, Yang J, Tan T (2017) Adhesion between modified binders and aggregate minerals at ambient conditions measured with particle-probe scanning force microscopes. J Mater Civ Eng 29(8):04017068

    Google Scholar 

  13. 13.

    Li Y, Yang J, Tan T (2018) Measuring adhesion between steel and early-hydrated Portland cement using particle probe scanning force microscopy. Cem Concr Compos 90:126–135

    Google Scholar 

  14. 14.

    Scherer GW (1986) Relaxation in glass and composites. Wiley, New York

    Google Scholar 

  15. 15.

    Tan T, Li Y, Yang J (2017) An experimental study of adhesion between aggregate minerals and asphalt binders using particle probe scanning force microscopy. Springer, New York, pp 109–120

    Google Scholar 

  16. 16.

    Tan T, Rahbar N, Buono A, Wheeler G, Soboyejo W (2011) Sub-critical crack growth in adhesive/marble interfaces. Mater Sci Eng A 528(10–11):3697–3704

    Google Scholar 

  17. 17.

    Xu G, Wei J, Tan T, Liu H (2007) Modelling bond strength of corroded plain bar reinforcement in concrete. Struct Concr 8(3):133–138

    Google Scholar 

  18. 18.

    Rahbar N, Jorjani M, Riccardelli C, Wheeler G, Yakub I, Tan T, Soboyejo WO (2010) Mixed mode fracture of marble/adhesive interfaces. Mater Sci Eng, A 527(18–19):4939–4946

    Google Scholar 

  19. 19.

    Abbass W, Khan MI, Mourad S (2018) Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete. Constr Build Mater 168:556–569

    Google Scholar 

  20. 20.

    Bernal S, De Gutierrez R, Delvasto S, Rodriguez E (2010) Performance of an alkali-activated slag concrete reinforced with steel fibers. Constr Build Mater 24(2):208–214

    Google Scholar 

  21. 21.

    Carneiro JA, Lima PRL, Leite MB, Toledo Filho RD (2014) Compressive stress–strain behavior of steel fiber reinforced-recycled aggregate concrete. Cem Concr Compos 46:65–72

    Google Scholar 

  22. 22.

    Dinh HH, Parra-Montesinos GJ, Wight JK (2010) Shear strength model for steel fiber reinforced concrete beams without stirrup reinforcement. J Struct Eng 137(10):1039–1051

    Google Scholar 

  23. 23.

    Lee S-C, Cho J-Y, Vecchio FJ (2011) Diverse embedment model for steel fiber-reinforced concrete in tension: model development. ACI Mater J 108(5):516

    Google Scholar 

  24. 24.

    Xu Z, Hao H, Li H (2012) Experimental study of dynamic compressive properties of fibre reinforced concrete material with different fibres. Mater Des 33:42–55

    Google Scholar 

  25. 25.

    Düğenci O, Haktanir T, Altun F (2015) Experimental research for the effect of high temperature on the mechanical properties of steel fiber-reinforced concrete. Constr Build Mater 75:82–88

    Google Scholar 

  26. 26.

    Tai Y-S, Pan H-H, Kung Y-N (2011) Mechanical properties of steel fiber reinforced reactive powder concrete following exposure to high temperature reaching 800 C. J Nucl Eng 241(7):2416–2424

    Google Scholar 

  27. 27.

    Hao Y, Hao H (2017) Pull-out behaviour of spiral-shaped steel fibres from normal-strength concrete matrix. Constr Build Mater 139:34–44

    Google Scholar 

  28. 28.

    Abu-Lebdeh T, Hamoush S, Heard W, Zornig B (2011) Effect of matrix strength on pullout behavior of steel fiber reinforced very-high strength concrete composites. Constr Build Mater 25(1):39–46

    Google Scholar 

  29. 29.

    Kaïkea A, Achoura D, Duplan F, Rizzuti L (2014) Effect of mineral admixtures and steel fiber volume contents on the behavior of high performance fiber reinforced concrete. Mater Des 63:493–499

    Google Scholar 

  30. 30.

    Wu Z, Shi C, He W, Wu L (2016) Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete. Constr Build Mater 103:8–14

    Google Scholar 

  31. 31.

    Wang H, Wang L (2013) Experimental study on static and dynamic mechanical properties of steel fiber reinforced lightweight aggregate concrete. Constr Build Mater 38:1146–1151

    Google Scholar 

  32. 32.

    Frazão C, Camões A, Barros J, Gonçalves D (2015) Durability of steel fiber reinforced self-compacting concrete. Constr Build Mater 80:155–166

    Google Scholar 

  33. 33.

    Iqbal S, Ali A, Holschemacher K, Bier TA (2015) Mechanical properties of steel fiber reinforced high strength lightweight self-compacting concrete (SHLSCC). Constr Build Mater 98:325–333

    Google Scholar 

  34. 34.

    Khaloo A, Raisi EM, Hosseini P, Tahsiri H (2014) Mechanical performance of self-compacting concrete reinforced with steel fibers. Constr Build Mater 51:179–186

    Google Scholar 

  35. 35.

    Niu D, Jiang L, Bai M, Miao Y (2013) Study of the performance of steel fiber reinforced concrete to water and salt freezing condition. Mater Des 44:267–273

    Google Scholar 

  36. 36.

    Pająk M, Ponikiewski T (2013) Flexural behavior of self-compacting concrete reinforced with different types of steel fibers. Constr Build Mater 47:397–408

    Google Scholar 

  37. 37.

    Reiter L, Wangler T, Roussel N, Flatt RJ (2018) The role of early age structural build-up in digital fabrication with concrete. Cem Concr Res 112:86–95

    Google Scholar 

  38. 38.

    Wangler T, Lloret E, Reiter L, Hack N, Gramazio F, Kohler M, Bernhard M, Dillenburger B, Buchli J, Roussel N (2016) Digital concrete: opportunities and challenges. RILEM Tec Lett 1:67–75

    Google Scholar 

  39. 39.

    Xu J, Ding L, Love PE (2017) Digital reproduction of historical building ornamental components: from 3D scanning to 3D printing. Autom Constr 76:85–96

    Google Scholar 

  40. 40.

    Zhou Y, Wang W, Luo H, Zhang Y (2019) Virtual pre-assembly for large steel structures based on BIM, PLP algorithm, and 3D measurement. Front Eng Manag 6(2):207–220

    Google Scholar 

  41. 41.

    Teng J-G, Zhang B, Zhang S, Fu B (2018) Steel-free hybrid reinforcing bars for concrete structures. Adv Struct Eng 21(16):2617–2622

    Google Scholar 

  42. 42.

    Weng S, Zhu H, Xia Y, Li J, Tian W (2019) A review on dynamic substructuring methods for model updating and damage detection of large-scale structures. Adv Struct Eng 23:584–600

    Google Scholar 

  43. 43.

    Biolzi L, Cattaneo S (2017) Response of steel fiber reinforced high strength concrete beams: experiments and code predictions. Cem Concr Compos 77:1–13

    Google Scholar 

  44. 44.

    Lu C, Leung CKJC, Research C (2016) A new model for the cracking process and tensile ductility of strain hardening cementitious composites (SHCC). Cem Concr Res 79:353–365

    Google Scholar 

  45. 45.

    Soboyejo W (2002) Mechanical properties of engineered materials, vol 152. CRC Press, Boca raton

    Google Scholar 

  46. 46.

    Almusallam T, Ibrahim S, Al-Salloum Y, Abadel A, Abbas H (2016) Analytical and experimental investigations on the fracture behavior of hybrid fiber reinforced concrete. Cem Concr Compos 74:201–217

    Google Scholar 

  47. 47.

    Banthia N, Majdzadeh F, Wu J, Bindiganavile V, Composites C (2014) Fiber synergy in Hybrid Fiber Reinforced Concrete (HyFRC) in flexure and direct shear. Cem Concr Compos 48:91–97

    Google Scholar 

  48. 48.

    Carpinteri A, Colombo G (1989) Numerical analysis of catastrophic softening behaviour (snap-back instability). Comput Struct 31(4):607–636

    Google Scholar 

  49. 49.

    Bosco C, Carpinteri A, Debernardi P (1990) Fracture of reinforced concrete: scale effects and snap-back instability. Eng Fract Mech 35(4–5):665–677

    Google Scholar 

  50. 50.

    Carpinteri A, Pugno N (2005) Are scaling laws on strength of solids related to mechanics or to geometry? Nat Mater 4(6):421–423

    Google Scholar 

  51. 51.

    Carpinteri A, Accornero F (2018) Multiple snap-back instabilities in progressive microcracking coalescence. Eng Fract Mech 187:272–281

    Google Scholar 

  52. 52.

    Carpinteri A, Accornero F (2019) The bridged crack model with multiple fibers: local instabilities, scale effects, plastic shake-down, and hysteresis. Theor Appl Fract Mech 104:102351

    Google Scholar 

  53. 53.

    Evans SG (1989) Rock avalanche run-up record. Nature 340(6231):271

    Google Scholar 

  54. 54.

    Hungr O (2006) Rock avalanche occurrence, process and modelling. In: Landslides from massive rock slope failure. Springer, Dordrecht, pp 243–266

  55. 55.

    Mäkinen T, Miksic A, Ovaska M, Alava MJ (2015) Avalanches in wood compression. Phys Rev Lett 115(5):055501

    Google Scholar 

  56. 56.

    Perla R, Cheng T, McClung DM (1980) A two–parameter model of snow–avalanche motion. J Glaciol 26(94):197–207

    Google Scholar 

  57. 57.

    Schweizer J, Bruce Jamieson J, Schneebeli M (2003) Snow avalanche formation. Rev Geophys 41(4):1016

    Google Scholar 

  58. 58.

    Dahmen KA, Ben-Zion Y, Uhl JT (2011) A simple analytic theory for the statistics of avalanches in sheared granular materials. Nat Phys 7(7):554

    Google Scholar 

  59. 59.

    Savage SB, Hutter K (1991) The dynamics of avalanches of granular materials from initiation to runout. Part I: analysis. Acta Mech 86(1–4):201–223

    MathSciNet  MATH  Google Scholar 

  60. 60.

    Antonaglia J, Wright WJ, Gu X, Byer RR, Hufnagel TC, LeBlanc M, Uhl JT, Dahmen KA (2014) Bulk metallic glasses deform via slip avalanches. Phys Rev Lett 112(15):155501

    Google Scholar 

  61. 61.

    Navas-Portella V, Corral Á, Vives E (2016) Avalanches and force drops in displacement-driven compression of porous glasses. Phys Rev E 94(3):033005

    Google Scholar 

  62. 62.

    Mehta AP, Dahmen KA, Ben-Zion Y (2006) Universal mean moment rate profiles of earthquake ruptures. Phys Rev E 73(5):056104

    Google Scholar 

  63. 63.

    Sethna JP, Dahmen KA, Myers CR (2001) Crackling noise. Nature 410(6825):242

    Google Scholar 

  64. 64.

    Zapperi S, Castellano C, Colaiori F, Durin G (2005) Signature of effective mass in crackling-noise asymmetry. Nat Phys 1(1):46

    Google Scholar 

  65. 65.

    Kirchner H, Michot G, Schweizer J (2002) Fracture toughness of snow in shear and tension. Scr Mater 46(6):425–429

    Google Scholar 

  66. 66.

    Dahmen KA (2017) Mean field theory of slip statistics. In: Avalanches in functional materials and geophysics. Springer, New York, pp 19–30

  67. 67.

    Dahmen KA, Ben-Zion Y, Uhl JT (2009) Micromechanical model for deformation in solids with universal predictions for stress-strain curves and slip avalanches. Phys Rev Lett 102(17):175501

    Google Scholar 

  68. 68.

    Friedman N, Jennings AT, Tsekenis G, Kim J-Y, Tao M, Uhl JT, Greer JR, Dahmen KA (2012) Statistics of dislocation slip avalanches in nanosized single crystals show tuned critical behavior predicted by a simple mean field model. Phys Rev Lett 109(9):095507

    Google Scholar 

  69. 69.

    ASTM D6272-17 (2017) Standard test method for flexural properties of unreinforced and reinforced plastics and electrical insulating materials by four-point bending. ASTM International, West Conshohocken

  70. 70.

    AASHTO T 97 (2018) Standard method of test for flexural strength of concrete (using simple beam with third- point loading). American Association of State Highway and Transportation Officials (AASHTO), Wahsington, DC

  71. 71.

    ASTM C78/C78M-18 (2018) Standard test method for flexural strength of concrete (using simple beam with third-point loading). ASTM International, West Conshohocken

  72. 72.

    Gali S, Subramaniam KV (2017) Evaluation of crack propagation and post-cracking hinge-type behavior in the flexural response of steel fiber reinforced concrete. Int J Concr Struct Mater 11(2):365–375

    Google Scholar 

  73. 73.

    Omondi B, Aggelis DG, Sol H, Sitters C (2016) Improved crack monitoring in structural concrete by combined acoustic emission and digital image correlation techniques. Struct Health Monit 15(3):359–378

    Google Scholar 

  74. 74.

    Chen T, Ferraro CC, Yin W, Ishee C, Ifju P (2010) A novel two-dimensional method to measure surface shrinkage in cementitious materials. Cem Concr Res 40(5):687–698

    Google Scholar 

  75. 75.

    He S, Feng Z, Rowlands R (1997) Fracture process zone analysis of concrete using moiré interferometry. Exp Mech 37(3):367–373

    Google Scholar 

  76. 76.

    Dai X, Pu Q, Wang L, Yun H, Wang Y (2011) Measurement on fracture process and prediction of the load capacity of steel fiber reinforced concrete by electronic speckle pattern interferometry. Compos B Eng 42(5):1181–1188

    Google Scholar 

  77. 77.

    Ferretti D, Michelini E, Rosati G (2015) Cracking in autoclaved aerated concrete: experimental investigation and XFEM modeling. Cem Concr Res 67:156–167

    Google Scholar 

  78. 78.

    Carrillo L, Mañosa L, Ortín J, Planes A, Vives E (1998) Experimental evidence for universality of acoustic emission avalanche distributions during structural transitions. Phys Rev Lett 81(9):1889

    Google Scholar 

  79. 79.

    Zapperi S, Vespignani A, Stanley HE (1997) Plasticity and avalanche behaviour in microfracturing phenomena. Nature 388(6643):658–660

    Google Scholar 

  80. 80.

    Alghamdi S, Du F, Yang J, Pinder G, Tan T (2020) Tensile and shear behavior of microscale growth layers between nacre in red abalone. J Mech Phys Solids 138:103928

    Google Scholar 

  81. 81.

    Alghamdi S, Du F, Yang J, Tan T (2018) The role of water in the initial sliding of nacreous tablets: findings from the torsional fracture of dry and hydrated nacre. J Mech Behav Biomed Mater 88:322–329

    Google Scholar 

  82. 82.

    Alghamdi S, Tan T, Hale-Sills C, Vilmont F, Xia T, Yang J, Huston D, Dewoolkar M (2017) Catastrophic failure of nacre under pure shear stresses of torsion. Sci Rep 7(1):13123

    Google Scholar 

  83. 83.

    Antonaglia J, Xie X, Schwarz G, Wraith M, Qiao J, Zhang Y, Liaw PK, Uhl JT, Dahmen KA (2014) Tuned critical avalanche scaling in bulk metallic glasses. Sci Rep 4:4382

    Google Scholar 

  84. 84.

    Quikrete Technical Data (2019) https://www.quikrete.com/pdfs/sds-c6-fast-setting-products.pdf. Accessed 10 Dec 2019

  85. 85.

    Galvanized steel wire material property data (2019) http://www.matweb.com/search/datasheet.aspx?matguid=abbf07b7f93a4c358a0ddd194f5c18be&ckck=1. Accessed 10 Dec 2019

  86. 86.

    Hillman galvanized hobby wire (2019) https://www.hillmangroup.com/us/en/Home-Solutions/Wall-Hanging/Wire/Hobby-Wire/Hillman-Galvanized-Hobby-Wire%C2%A0/p/123107. Accessed 10 Dec 2019

  87. 87.

    Dunham MR, Rush AS, Hanson JH (2007) Effects of induced vibrations on early age concrete. J Perform Constr Facil 21(3):179–184

    Google Scholar 

  88. 88.

    Toutanji H, Bayasi Z (1998) Effects of manufacturing techniques on the flexural behavior of steel fiber-reinforced concrete. Cem Concr Res 28(1):115–124

    Google Scholar 

  89. 89.

    Zand SS (2012) Effect of vibration time on some mechanical properties of high strength steel fiber reinforced concrete. Eastern Mediterranean University (EMU), Famagusta

    Google Scholar 

  90. 90.

    Gershenfeld NA, Gershenfeld N (1999) The nature of mathematical modeling. Cambridge University Press, Cambridge

    Google Scholar 

  91. 91.

    Junior SAR, Ferracane JL, Della Bona Á (2008) Flexural strength and Weibull analysis of a microhybrid and a nanofill composite evaluated by 3-and 4-point bending tests. Dent Mater 24(3):426–431

    Google Scholar 

  92. 92.

    Dahmen K (2005) Nonlinear dynamics: universal clues in noisy skews. Nat Phys 1(1):13

    Google Scholar 

  93. 93.

    Sarmah R, Ananthakrishna G, Sun B, Wang W (2011) Hidden order in serrated flow of metallic glasses. Acta Mater 59(11):4482–4493

    Google Scholar 

  94. 94.

    Mehta AP, Mills AC, Dahmen KA, Sethna JP (2002) Universal pulse shape scaling function and exponents: critical test for avalanche models applied to Barkhausen noise. Phys Rev E 65(4):046139

    Google Scholar 

  95. 95.

    Fisher DS (1998) Collective transport in random media: from superconductors to earthquakes. Phys Rep 301(1–3):113–150

    Google Scholar 

  96. 96.

    Wright WJ, Liu Y, Gu X, Van Ness KD, Robare SL, Liu X, Antonaglia J, LeBlanc M, Uhl JT, Hufnagel TC (2016) Experimental evidence for both progressive and simultaneous shear during quasistatic compression of a bulk metallic glass. J Appl Phys 119(8):084908

    Google Scholar 

  97. 97.

    Kampen N (2007) Stochastic processes in physics and chemistry. Elsevier, Amsterdam

    Google Scholar 

  98. 98.

    Papanikolaou S, Bohn F, Sommer RL, Durin G, Zapperi S, Sethna JP (2011) Universality beyond power laws and the average avalanche shape. Nat Phys 7(4):316

    Google Scholar 

  99. 99.

    Kang S-T, Lee Y, Park Y-D, Kim J-K (2010) Tensile fracture properties of an ultra high performance fiber reinforced concrete (UHPFRC) with steel fiber. Compos Struct 92(1):61–71

    Google Scholar 

  100. 100.

    McFaul LW, Wright WJ, Sickle J, Dahmen KA (2019) Force oscillations distort avalanche shapes. Mater Res Lett 7(12):496–502

    Google Scholar 

Download references


This work was supported by Transportation Infrastructure Durability Center funding from Department of Transportation (Grant Number: 69A3551847101), the Vermont additive manufacturing development funding from Department of Defense (Grant Number: 07120-OEA-AMP-VTC) and support from College of Engineering and Mathematical Sciences at the University of Vermont (UVM). Appreciation is also extended to the UVM microscopy imaging center for the assistance of image characterization.

Author information



Corresponding author

Correspondence to Ting Tan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest with respect to the scope or to the content of the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Worley, R., Du, F. et al. Avalanches during flexure of early-age steel fiber reinforced concrete beams. Mater Struct 53, 76 (2020). https://doi.org/10.1617/s11527-020-01520-w

Download citation


  • Concrete
  • Avalanche
  • Steel fibers
  • Beam
  • Flexure