Recommendations of RILEM TC 260-RSC for using superabsorbent polymers (SAP) for improving freeze–thaw resistance of cement-based materials

A Correction to this article is available

This article has been updated


This recommendation is focused on application of superabsorbent polymers (SAP) for the improvement of the resistance of cement-based materials to freeze–thaw attack with or without deicing salts. A simple approach to the determination of the amount and properties of SAP as well as methods to verify SAP effectiveness for frost resistance protection are presented.

This is a preview of subscription content, access via your institution.

Change history

  • 17 March 2020

    Agnieszka J. Klemm is affiliated to Glasgow Caledonian University, Glasgow, UK.


  1. 1.

    EN 12390-9:2006 Testing hardened concrete—part 9: freeze–thaw resistance—scaling

  2. 2.

    ASTM C666/C 666M—03 (2008) Resistance of concrete to rapid freezing and thawing

  3. 3.

    JIS Japan Industrial Standard A1148:2010—Method of test for resistance of concrete to freezing and thawing

  4. 4.

    National Standard of the People’s Republic of China GB/T 50082-2009—Standard for test methods of long-term performance and durability of ordinary concrete, part 4: test methods for resistance of concrete to freezing and thawing

  5. 5.

    GOST 10060-2012—Concretes: methods for the determination of frost-resistance

  6. 6.

    RILEM recommendation CDF test (1996) Test method for the freeze–thaw resistance of concrete test with sodium chloride solution

  7. 7.

    SIS-CEN/TS 12390-9:2016—Testing hardened concrete—part 9: freezethaw resistance with deicing salts

  8. 8.

    ASTM C672/C 672M—03—Scaling resistance of concrete surfaces exposed to deicing chemicals

  9. 9.

    Mechtcherine V, Reinhardt HW (eds) (2012) Application of superabsorbent polymers (SAP) in concrete construction. RILEM state-of-the-art report prepared by technical committee 225-SAP.

  10. 10.

    Mechtcherine V, Secrieru E, Schröfl C (2015) Effect of superabsorbent polymers (SAPs) on rheological properties of fresh cement-based mortars—development of yield stress and plastic viscosity over time. Cem Concr Res 67:52–65.

    Article  Google Scholar 

  11. 11.

    Serpukhov I, Mechtcherine V (2015) Early-age shrinkage of ordinary concrete and a strain-hardening cement-based composite (SHCC) in the conditions of hot weather curing. In: Hellmich C, Pichler B, Kollegger J (eds) Mechanics and physics of creep, shrinkage and durability of concrete and concrete structures (proceedings of CONCREEP 10), ASCE, Reston (VA/USA), pp 1504–1513

  12. 12.

    Boshoff et al (2019) The effect of superabsorbent polymers on the mitigation of plastic shrinkage cracking of conventional concrete—results of a RILEM inter-laboratory test (in preparation)

  13. 13.

    Mechtcherine V, Gorges M, Schröfl C, Assmann A, Brameshuber W, Bettencourt Ribeiro V, Cusson D, Custódio J, Fonseca da Silva E, Ichimiya K, Igarashi S, Klemm A, Kovler K, Lopes A, Lura P, Nguyen VT, Reinhardt HWTF, Weiss J, Wyrzykowski M, Ye G, Zhutovsky S (2014) Effect of internal curing by using superabsorbent polymers (SAP) on autogenous shrinkage and other properties of a high-performance fine-grained concrete: results of a RILEM round-robin Test, TC 225-SAP. Mater Struct 47(3):541–562

    Article  Google Scholar 

  14. 14.

    Wyrzykowski M, Igarashi S-I, Lura P, Mechtcherine V (2018) Recommendation of RILEM TC 260-RSC: using SAP to mitigate autogenous shrinkage of cement-based materials. Mater Struct 51:135.

    Article  Google Scholar 

  15. 15.

    Snoeck D, De Belie N (2015) Repeated autogenous healing in strain-hardening cementitious composites by using superabsorbent polymers. J Mater Civil Eng 04015086:1–11.

    Article  Google Scholar 

  16. 16.

    Mechtcherine V, Schröfl C, Wyrzykowski M, Gorges M, Lura P, Cusson D, Margeson J, De Belie N, Snoeck D, Ichimiya K, Igarashi S-I, Falikman V, Friedrich S, Bokern J, Kara P, Marciniak A, Reinhardt H-W, Sippel S, Bettencourt Ribeiro A, CustódioJ Ye G, Dong H, Weiss J (2017) Effect of superabsorbent polymers (SAP) on the freeze–thaw resistance of concrete: results of a RILEM interlaboratory study. Mater Struct 50(1):14.

    Article  Google Scholar 

  17. 17.

    Mönnig S, Lura P (2007) Superabsorbent polymers—an additive to increase freeze–thaw resistance of high strength concrete. In: Grosse CU (ed) Advances in construction materials, vol 2. Springer, Heidelberg, pp 351–358

    Google Scholar 

  18. 18.

    Hasholt MT, Jensen OM, Laustsen S (2015) Superabsorbent polymers as a means of improving frost resistance of concrete. Adv Civ Eng Mater 4:237–256

    Google Scholar 

  19. 19.

    Laustsen S, Hasholt MT, Jensen OM (2015) Void structure of concrete with superabsorbent polymers and its relation to frost resistance of concrete. Mater Struct 48(1–2):357–368

    Article  Google Scholar 

  20. 20.

    Du L, Folliard KJ (2005) Mechanisms of air entrainment in concrete. Cem Concr Res 35(8):1463–1471

    Article  Google Scholar 

  21. 21.

    Eickschen D (2008) Operating mechanisms of air-entraining admixtures. Cem Int 6(6):80–94

    Google Scholar 

  22. 22.

    EN 480-11:2005 (2005) Admixtures for concrete, mortar and grout—test methods—part 11: determination of air void characteristics in hardened concrete

  23. 23.

    ASTM C457-16: Standard test method for microscopical determination of parameters of the air-void system in hardened concrete

  24. 24.

    Lindmark S (1998) Mechanisms of salt frost scaling of Portland cement-bound materials: studies and hypothesis. Ph.D. thesis, Division of Building Materials, Lund Institute of Technology, Lund, Sweden, 286 pp

  25. 25.

    EN 12350-7:2009 (2009) Testing fresh concrete—part 7: air content—pressure methods

  26. 26.

    Schröfl C, Mechtcherine V, Gorges M (2012) Relation between the molecular structure and the efficiency of superabsorbent polymers (SAP) as concrete admixture to mitigate autogenous shrinkage. Cem Concr Res 42(6):865–873.

    Article  Google Scholar 

  27. 27.

    Snoeck D, Schröfl Ch, Mechtcherine V (2018) Recommendation of RILEM TC 260-RSC: testing sorption by superabsorbent polymers (SAP) prior to implementation in cement-based materials. Mater Struct 51:116.

    Article  Google Scholar 

  28. 28.

    Mechtcherine V, Snoeck D, Schröfl C, De Belie N, Klemm AJ, Ichimiya K, Moon J, Wyrzykowski M, Lura P, Toropovs N, Assmann A, Igarashi S, De La Varga I, Almeida FCR, Erk KA, Ribeiro AB, Custódio J, Reinhardt HW, Falikman V (2018) Testing superabsorbent polymer (SAP) sorption properties prior to implementation in concrete: results of a RILEM round-robin test. Mater Struct 51(1):28.

    Article  Google Scholar 

  29. 29.

    Jensen OM, Hansen PF (2002) Water-entrained cement-based materials II. Experimental observations. Cem Concr Res 32:973–978

    Article  Google Scholar 

  30. 30.

    Riyazi S, Kevern JT, Mulheron M (2017) Super absorbent polymers (SAPs) as physical air entrainment in cement mortars. Constr Build Mater 147:669–676

    Article  Google Scholar 

  31. 31.

    Kusayama S, Kuwabara H, Igarashi S (2014) Comparison of salt scaling resistance of concretes with different types of superabsorbent polymers. In: Application of superabsorbent polymers and other new admixtures in concrete construction, proceedings pro095, pp 267–277

  32. 32.

    Setzer MJ (2001) Recommendations of RILEM TC 176-IDC: test methods of frost resistance of concrete. Mater Struct 34:515–525

    Article  Google Scholar 

  33. 33.

    Setzer MJ, Fagerlund G, Janssen DJ (1996) CDF test—test method for the freeze–thaw resistance of concrete—tests with sodium chloride solution (CDF). Mater Struct 29:523–528

    Article  Google Scholar 

  34. 34.

    Olawuyi BJ, Boshoff WP (2017) Influence of SAP content and curing age on air void distribution of high performance concrete using 3D volume analysis. Constr Build Mater 135:580–589

    Article  Google Scholar 

Download references


The contributions of all TC members in discussion during the drafting of this recommendation are gratefully acknowledged. The authors extend their thanks to the industrial partners for the proofreading and valuable comments.

Author information



Corresponding author

Correspondence to Viktor Mechtcherine.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This recommendation has been prepared by members of Work Group 4 “Effect of SAP on freeze–thaw resistance”—Viktor Mechtcherine, Christof Schröfl, Michaela Reichardt, Agnieszka J. Klemm and Kamal H. Khayat—acting within the RILEM TC 260-RSC “Recommendations for use of superabsorbent polymers in concrete construction” and has been reviewed and approved by all members of the TC 260-RSC.

RILEM TC 260-RSC membership

Chair: Viktor Mechtcherine.

Deputy chair: Mateusz Wyrzykowski.

Members: Livia Borba Agostinho, Fernando Almeida, Alexander Assmann, Billy Boshoff, Daniel Cusson, João Custódio, Nele De Belie, Igor De la Varga, Kendra Erk, Vyatcheslav Falikman, Stefan Friedrich, Kazuo Ichimiya, Shin-Ichi Igarashi, Patricija Kara De Maeijer, Kamal H. Khayat, Agnieszka J. Klemm, Pietro Lura, Viktor Mechtcherine, Juhyuk Moon, Michaela Reichardt, Hans W. Reinhardt, António Bettencourt Ribeiro, Christof Schroefl, Didier Snoeck, Nikolajs Toropovs, Chiara Villani, Mateusz Wyrzykowski.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mechtcherine, V., Schröfl, C., Reichardt, M. et al. Recommendations of RILEM TC 260-RSC for using superabsorbent polymers (SAP) for improving freeze–thaw resistance of cement-based materials. Mater Struct 52, 75 (2019).

Download citation


  • Deicing salt
  • Freeze–thaw
  • Frost resistance
  • Superabsorbent polymers