Skip to main content
Log in

Rutting behavior and rheological modeling of EVA-modified binders in the mixture and binder scales

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This study addressed the rutting potential of binders prepared with ethylene vinyl acetate copolymer (AC + EVA) and this same copolymer combined with polyphosphoric acid (AC + EVA + PPA). Multiple stress creep and recovery (MSCR) tests at 64, 70 and 76 °C were conducted in the binder samples, as well as flow number tests at 60 °C in the mixture samples. The AC + EVA and the AC + EVA + PPA are equally graded on Superpave (76-xx), and rheological models were selected to further investigate this rutting behavior of the materials. The rankings of the most rut resistant mixtures—AC + EVA + PPA, followed by the AC + EVA and the 50/70 base binder—are exactly the same according to the binder parameters Jnr (nonrecoverable compliance from MSCR), GV (viscous component of the creep stiffness from the Burgers model) and α from the modified power model. However, the parameter Jnr, diff (percent difference in compliances) showed a diametrically opposite trend in terms of the rutting resistance of binders, and this further suggests its inability to be used as a performance-related parameter in the Superpave specification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AASHTO:

American Association of State Highway and Transportation Officials

AC:

Asphalt cement/binder

ALF:

Accelerated loading facility

ASTM:

American Society for Testing and Materials

COV:

Coefficient of variation

EVA:

Ethylene vinyl acetate

FN:

Flow number

MSCR:

Multiple stress creep and recovery

PPA:

Polyphosphoric acid

Superpave:

Superior performance asphalt pavements

References

  1. Tapkın S, Uşar Ü, Tuncan A, Tuncan M (2009) Repeated creep behavior of polypropylene fiber-reinforced bituminous mixtures. J Transp Eng 135(4):240–249. https://doi.org/10.1061/(ASCE)0733-947X(2009)135:4(240)

    Article  Google Scholar 

  2. Wasage TLJ, Kazatchkov IB, Stastna J, Zanzotto L (2009) Rutting evaluation of asphalt binders and mixes. In: Loizos A, Partl MN, Scarpas T, Al-Qadi IL (eds) Advanced testing and characterization of bituminous materials, vol 2. CRC Press, London, pp 989–998

    Google Scholar 

  3. Domingos MDI, Faxina AL (2016) Susceptibility of asphalt binders to rutting: literature review. J Mater Civ Eng 28(2):04015134. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001364

    Article  Google Scholar 

  4. Bastos JBS, Babadopulos LFAL, Soares JB (2017) Relationship between multiple stress creep recovery (MSCR) binder test results and asphalt concrete rutting resistance in Brazilian roadways. Constr Build Mater 145:20–27. https://doi.org/10.1016/j.conbuildmat.2017.03.216

    Article  Google Scholar 

  5. Onofre FC, Castelo Branco VTF, Soares JB, Faxina AL (2013) Avaliação do efeito de ligantes asfálticos modificados na resistência à deformação permanente de misturas asfálticas densas [Analysis of the effect of modified asphalt binders on the rutting resistance of dense-graded asphalt mixtures]. Transportes 21(3):14–21. https://doi.org/10.4237/transportes.v21i3.685 (in Portuguese)

    Article  Google Scholar 

  6. D’Angelo J, Kluttz R, Dongré R, Stephens K, Zanzotto L (2007) Revision of the Superpave high temperature binder specification: the multiple stress creep recovery test. J Assoc Asph Paving Technol 76:123–162

    Google Scholar 

  7. Stempihar J, Gundla A, Underwood BS (2018) Interpreting stress sensitivity in the multiple stress creep and recovery test. J Mater Civ Eng 30(2):04017283. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002153

    Article  Google Scholar 

  8. White G (2017) Grading highly modified binders by multiple stress creep recovery. Road Mater Pavement Des 18(6):1322–1337. https://doi.org/10.1080/14680629.2016.1212730

    Article  MathSciNet  Google Scholar 

  9. Golalipour A, Bahia HU, Tabatabaee HA (2017) Critical considerations toward better implementation of the multiple stress creep and recovery test. J Mater Civ Eng 29(5):04016295. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001803

    Article  Google Scholar 

  10. Golalipour A (2011) Modification of multiple stress creep and recovery test procedure and usage in specification. University of Wisconsin-Madison, Thesis

    Google Scholar 

  11. Wasage TLJ, Stastna J, Zanzotto L (2011) Rheological analysis of multi-stress creep recovery (MSCR) test. Int J Pavement Eng 12(6):561–568. https://doi.org/10.1080/10298436.2011.573557

    Article  Google Scholar 

  12. Witczak MW, Kaloush K, Pellinen T, El-Basyouny M, Von Quintus H (2002) Simple performance test for Superpave mix design. NCHRP Report 465. Transportation Research Board, Washington (DC)

  13. Arshadi A (2013) Importance of asphalt binder properties on rut resistance of asphalt mixture. Thesis, University of Wisconsin-Madison

  14. Domingos MDI, Faxina AL, Bernucci LLB (2017) Characterization of the rutting potential of modified asphalt binders and its correlation with the mixture’s rut resistance. Constr Build Mater 144:207–213. https://doi.org/10.1016/j.conbuildmat.2017.03.171

    Article  Google Scholar 

  15. Zhang J, Walubita LF, Faruk ANM, Karki P, Simate GS (2015) Use of the MSCR test to characterize the asphalt binder properties relative to HMA rutting performance—a laboratory study. Constr Build Mater 94:218–227. https://doi.org/10.1016/j.conbuildmat.2015.06.044

    Article  Google Scholar 

  16. Liu Y, You Z (2009) Determining Burger’s model parameters of asphalt materials using creep-recovery testing data. In: You Z, Abbas AR, Wang L (eds) Pavements and materials: modeling, testing and performance. American Society of Civil Engineers, Reston, pp 26–36

    Google Scholar 

  17. Saboo N, Kumar P (2015) A study on creep and recovery behavior of asphalt binders. Constr Build Mater 96:632–640. https://doi.org/10.1016/j.conbuildmat.2015.08.078

    Article  Google Scholar 

  18. Bahia HU, Zhai H, Zeng M, Hu Y, Turner P (2001) Development of binder specification parameters based on characterization of damage behavior. J Assoc Asph Paving Technol 70:442–470

    Google Scholar 

  19. Hajikarimi P, Rahi M, Nejad FM (2015) Comparing different rutting specification parameters using high temperature characteristics of rubber-modified asphalt binders. Road Mater Pavement Des 16(4):751–766. https://doi.org/10.1080/14680629.2015.1063533

    Article  Google Scholar 

  20. Ameri M, Sheikhmotevali AH, Fasihpour A (2014) Evaluation and comparison of flow number calculation methods. Road Mater Pavement Des 15(1):182–206. https://doi.org/10.1080/14680629.2013.868819

    Article  Google Scholar 

  21. Biligiri KP, Kaloush KE, Mamlouk MS, Witczak MW (2007) Rational modeling of tertiary flow for asphalt mixtures. Transp Res Rec 2001:63–72. https://doi.org/10.3141/2001-08

    Article  Google Scholar 

  22. Domingos MDI (2017) The importance of the creep and recovery times on the rheological behavior and the susceptibility of modified asphalt binders to rutting. Dissertation, University of Sao Paulo, Sao Carlos

  23. AASHTO (2009) Standard specification for performance-graded asphalt binder. Designation M320-09. American Association of State Highway and Transportation Officials, Washington (DC)

  24. ASTM (2004) Standard test method for effect of heat and air on a moving film of asphalt (rolling thin-film oven test). Designation D2872-04. American Society for Testing and Materials, West Conshohocken

  25. DER-SP (2005) Concreto asfáltico [Asphaltic concrete]. Technical Specification ET-DE-P00/027. Departamento de Estradas de Rodagem do Estado de Sao Paulo, Brazil (in Portuguese)

  26. ASTM (2009) Standard viscosity-temperature chart for asphalts. Designation D2493/D2493 M-09. American Society for Testing and Materials, West Conshohocken

  27. AASHTO (2014) Standard method of test for multiple stress creep recovery (MSCR) test of asphalt binder using a dynamic shear rheometer (DSR). Designation T350-14. American Association of State Highway and Transportation Officials, Washington (DC)

  28. Cunha MB, Zegarra JE, Fernandes Jr JL (2007) Revisão da seleção do grau de desempenho (PG) de ligantes asfálticos por estado no Brasil [Revision of the selection of performance-graded (PG) asphalt binders for each state in Brazil]. Anais do 21º Congresso Nacional de Pesquisa e Ensino em Transportes, ANPET, Rio de Janeiro (in Portuguese)

  29. Leite LFM, Tonial IA (1994) Qualidade dos cimentos asfálticos brasileiros segundo as especificações SHRP [Grading of the Brazilian asphalt cements according to the SHRP specifications]. Anais do 12o Encontro do Asfalto, Instituto Brasileiro de Petróleo, Gás e Biocombustíveis, Rio de Janeiro, 94–119 (in Portuguese)

  30. Fontes LTPL, Trichês G, Pais JC, Pereira PAA (2010) Evaluating permanent deformation in asphalt rubber mixtures. Constr Build Mater 24:1193–1200. https://doi.org/10.1016/j.conbuildmat.2009.12.021

    Article  Google Scholar 

  31. D’Angelo J, Dongré R (2009) Practical use of multiple stress creep and recovery test: characterization of styrene–butadiene–styrene dispersion and other additives in polymer-modified asphalt binders. Transp Res Rec 2126:73–82. https://doi.org/10.3141/2126-09

    Article  Google Scholar 

  32. Fee D, Maldonado R, Reinke G, Romagosa H (2010) Polyphosphoric acid modification of asphalt. Transp Res Rec 2179:49–57. https://doi.org/10.3141/2179-06

    Article  Google Scholar 

  33. AASHTO (2013) Standard method of test for multiple stress creep recovery (MSCR) test of asphalt binder using a dynamic shear rheometer (DSR). Designation TP70-13. American Association of State Highway and Transportation Officials, Washington (DC)

  34. Polacco G, Filippi S, Merusi F, Stastna G (2015) A review of the fundamentals of polymer-modified asphalts: asphalt/polymer interactions and principles of compatibility. Adv Colloid Interface Sci 224:72–112. https://doi.org/10.1016/j.cis.2015.07.010

    Article  Google Scholar 

  35. Dreessen S, Planche JP, Gardel V (2009) A new performance related test method for rutting prediction: MSCRT. In: Loizos A, Partl MN, Scarpas T, Al-Qadi IL (eds) Advanced testing and characterization of bituminous materials, vol 2. CRC Press, London, pp 971–980

    Google Scholar 

  36. Li Q, Ni F, Gao L, Yuan Q, Xiao Y (2014) Evaluating the rutting resistance of asphalt mixtures using an advanced repeated load permanent deformation test under field conditions. Constr Build Mater 61:241–251. https://doi.org/10.1016/j.conbuildmat.2014.02.052

    Article  Google Scholar 

  37. Rodezno MC, Kaloush KE, Corrigan MR (2010) Development of a flow number predictive model. Transp Res Rec 2181:79–87. https://doi.org/10.3141/2181-09

    Article  Google Scholar 

Download references

Acknowledgements

The first author thanks the Brazilian Federal Research Agency (CAPES) for conceding a doctorate scholarship under the Grant No. 141377/2012-7 between 2012 and 2013, as well as the Research Agency of the Sao Paulo State (FAPESP) for providing two scholarships under the Grant Numbers 2013/20483-6 (regular scholarship between 2013 and 2016) and 2014/17584-8 (scholarship for a visiting program at the University of Wisconsin-Madison, US). The second author acknowledges FAPESP for supplying financial funds under the Grant No. 2006/55835-6. All the authors are grateful to the Lubnor-Petrobras refinery (Fortaleza, Ceara, Brazil) for supplying the 50/70 original binder used in the preparation of the samples, and big thanks also go to Braskem (Brazil), the Bandeirantes quarry (Sao Carlos, Sao Paulo, Brazil) and Innophos Inc. (US) for supplying the HM 728 EVA copolymer, the basaltic aggregates and the Innovalt® E200 PPA to the study, respectively.

Funding

This study was funded by the Brazilian Federal Research Agency (CAPES) and the Research Agency of the Sao Paulo State (FAPESP) under the Grant Numbers reported above.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matheus David Inocente Domingos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domingos, M.D.I., Faxina, A.L. & Bernucci, L.L.B. Rutting behavior and rheological modeling of EVA-modified binders in the mixture and binder scales. Mater Struct 52, 36 (2019). https://doi.org/10.1617/s11527-019-1335-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-019-1335-z

Keywords

Navigation