Materials and Structures

, 50:94 | Cite as

Structural behaviour of prestressed concrete sleepers produced with high performance recycled aggregate concrete

  • Andreu Gonzalez-Corominas
  • Miren Etxeberria
  • Ignasi Fernandez
Original Article


A comparative analysis of the structural behaviour of prestressed concrete sleepers made with high performance concrete (HPC) and high performance recycled aggregate concrete (HPRAC) is presented in this study. Two types of HPRAC sleepers were tested, using 50 and 100% of recycled concrete aggregate (RCA) in replacement of coarse natural aggregates. The RCA employed in this research was sourced from crushing rejected HPC sleepers. The aim of this study was to determine through analysis if the HPRAC sleepers’ behaviour fulfilled the European minimum requirements standards for prestressed concrete sleepers and compare their experimental behaviour with that of the HPC sleepers. The three types of prestressed concrete sleepers were subjected to static load tests at rail-seat and centre section (positive and negative load). In the centre section tests a comparative study between the experimental results and the proposed values of four assessment methods of ultimate capacity was carried out. Dynamic load and fatigue tests were also performed at the rail-seat section. The HPRACs and HPC sleepers met all the structural requirements for prestressed concrete sleepers. The experimental results determined the satisfactory performance of the HPRAC-50 and the HPRAC-100, which was very similar to that of the HPC sleepers. The load–strain behaviour recorded via the use of strain gauges on the prestressing bars revealed slightly higher stiffness of the HPC sleepers. The values obtained from the four assessment methods of ultimate capacity were also accurate when applied to HPRAC.


Recycled aggregate concrete High performance concrete Sleeper Structural prestressed concrete Railway sustainability 



The authors wish to acknowledge the financial support of The Ministry of Economy and Competitiveness (Spain) by the INNPACT Project (IPT-2011-1655-370000) and the technical support of DRACE Infrastructuras S. L. and Instituto de Ciencias de la Construcción Eduardo Torroja.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Eurostat (2012) Waste statistics in Europe.
  2. 2.
    Silva RV, De Brito J, Dhir RK (2014) Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr Build Mater 65:201–217. doi: 10.1016/j.conbuildmat.2014.04.117 CrossRefGoogle Scholar
  3. 3.
    Agrela F, Sánchez de Juan M, Ayuso J et al (2011) Limiting properties in the characterisation of mixed recycled aggregates for use in the manufacture of concrete. Constr Build Mater 25:3950–3955. doi: 10.1016/j.conbuildmat.2011.04.027 CrossRefGoogle Scholar
  4. 4.
    Xiao J, Li W, Fan Y, Huang X (2012) An overview of study on recycled aggregate concrete in China (1996–2011). Constr Build Mater 31:364–383. doi: 10.1016/j.conbuildmat.2011.12.074 CrossRefGoogle Scholar
  5. 5.
    Thomas C, Setién J, Polanco JA et al (2013) Durability of recycled aggregate concrete. Constr Build Mater 40:1054–1065. doi: 10.1016/j.conbuildmat.2012.11.106 CrossRefGoogle Scholar
  6. 6.
    Tabsh SW, Abdelfatah AS (2009) Influence of recycled concrete aggregates on strength properties of concrete. Constr Build Mater 23:1163–1167. doi: 10.1016/j.conbuildmat.2008.06.007 CrossRefGoogle Scholar
  7. 7.
    Poon CS, Shui ZH, Lam L et al (2004) Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cem Concr Res 34:31–36. doi: 10.1016/S0008-8846(03)00186-8 CrossRefGoogle Scholar
  8. 8.
    Poon CS, Shui ZH, Lam L (2004) Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Constr Build Mater 18:461–468. doi: 10.1016/j.conbuildmat.2004.03.005 CrossRefGoogle Scholar
  9. 9.
    Kwan WH, Ramli M, Kam KJ, Sulieman MZ (2011) Influence of the amount of recycled coarse aggregate in concrete design and durability properties. Constr Build Mater 26:565–573. doi: 10.1016/j.conbuildmat.2011.06.059 Google Scholar
  10. 10.
    Kou SC, Poon CS, Etxeberria M (2011) Influence of recycled aggregates on long term mechanical properties and pore size distribution of concrete. Cem Concr Compos 33:286–291. doi: 10.1016/j.cemconcomp.2010.10.003 CrossRefGoogle Scholar
  11. 11.
    Kou SC, Poon CS (2012) Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Constr Build Mater 35:69–76. doi: 10.1016/j.conbuildmat.2012.02.032 CrossRefGoogle Scholar
  12. 12.
    Koenders EAB, Pepe M, Martinelli E (2014) Compressive strength and hydration processes of concrete with recycled aggregates. Cem Concr Res 56:203–212CrossRefGoogle Scholar
  13. 13.
    Etxeberria M, Vázquez E, Marí AR (2006) Microstructure analysis of hardened recycled aggregate concrete. Mag Concr Res 58:683–690CrossRefGoogle Scholar
  14. 14.
    Etxeberria M, Vázquez E, Marí A, Barra M (2007) Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem Concr Res 37:735–742. doi: 10.1016/j.cemconres.2007.02.002 CrossRefGoogle Scholar
  15. 15.
    Etxeberria M, Gonzalez-Corominas A, Valero I Application of low-grade recycled aggregates for non-structural concrete production in Barcelona city. In: Proceedings of the third international conference on sustainable construction materials and technologyGoogle Scholar
  16. 16.
    Brand AS, Roesler JR, Salas A (2015) Initial moisture and mixing effects on higher quality recycled coarse aggregate concrete. Constr Build Mater 79:83–89. doi: 10.1016/j.conbuildmat.2015.01.047 CrossRefGoogle Scholar
  17. 17.
    Tam VWY, Gao XF, Tam CM (2005) Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach. Cem Concr Res 35:1195–1203. doi: 10.1016/j.cemconres.2004.10.025 CrossRefGoogle Scholar
  18. 18.
    Tam VWY, Tam CM (2007) Assessment of durability of recycled aggregate concrete produced by two-stage mixing approach. J Mater Sci 42:3592–3602. doi: 10.1007/s10853-006-0379-y CrossRefGoogle Scholar
  19. 19.
    Kou SC, Poon CS, Chan D (2008) Influence of fly ash as a cement addition on the properties of recycled aggregate concrete. Mater Struct 41:1191–1201CrossRefGoogle Scholar
  20. 20.
    Kou S, Poon C, Chan D (2004) Properties of steam cured recycled aggregate fly ash concrete. In: Vázquez E, Hendriks C, Janssen G (eds) International RILEM conference on the use of recycled materials in buildings and structures. RILEM Publications SARL, Barcelona, Spain, pp 590–599Google Scholar
  21. 21.
    Ajdukiewicz A, Kliszczewicz A (2002) Influence of recycled aggregates on mechanical properties of HS/HPC. Cem Concr Compos 24:269–279. doi: 10.1016/S0958-9465(01)00012-9 CrossRefGoogle Scholar
  22. 22.
    Limbachiya MC, Leelawat T, Dhir RK (2000) Use of recycled concrete aggregate in high-strength concrete. Mater Struct 33:574–580CrossRefGoogle Scholar
  23. 23.
    Kou S, Poon C (2015) Effect of the quality of parent concrete on the properties of high performance recycled aggregate concrete. Constr Build Mater 77:501–508. doi: 10.1016/j.conbuildmat.2014.12.035 CrossRefGoogle Scholar
  24. 24.
    Tu T-Y, Chen Y-Y, Hwang C-L (2006) Properties of HPC with recycled aggregates. Cem Concr Res 36:943–950. doi: 10.1016/j.cemconres.2005.11.022 CrossRefGoogle Scholar
  25. 25.
    Gonzalez-Corominas A, Etxeberria M (2014) Experimental analysis of properties of high performance recycled aggregate concrete. Constr Build Mater 52:227–235. doi: 10.1016/j.conbuildmat.2013.11.054 CrossRefGoogle Scholar
  26. 26.
    Gonzalez-Corominas A, Etxeberria M (2014) Properties of high performance concrete made with recycled fine ceramic and coarse mixed aggregates. Constr Build Mater 68:618–626. doi: 10.1016/j.conbuildmat.2014.07.016 CrossRefGoogle Scholar
  27. 27.
    ACI Committee 363 (1997) State of the art report on high-strength concrete. Farmington HillsGoogle Scholar
  28. 28.
    Ferdous W, Manalo A, Van Erp G et al (2015) Composite railway sleepers—recent developments, challenges and future prospects. Compos Struct 134:158–168. doi: 10.1016/j.compstruct.2015.08.058 CrossRefGoogle Scholar
  29. 29.
    Manalo A, Aravinthan T, Karunasena W, Ticoalu A (2010) A review of alternative materials for replacing existing timber sleepers. Compos Struct 92:603–611. doi: 10.1016/j.compstruct.2009.08.046 CrossRefGoogle Scholar
  30. 30.
    Union of International Railways (2012) Newsletter, high speed rail, fast track to sustainable mobilityGoogle Scholar
  31. 31.
    Koh T, Shin M, Bae Y, Hwang S (2016) Structural performances of an eco-friendly prestressed concrete sleeper. Constr Build Mater 102:445–454. doi: 10.1016/j.conbuildmat.2015.10.189 CrossRefGoogle Scholar
  32. 32.
    Rezaie F, Farnam SM (2015) Fracture mechanics analysis of pre-stressed concrete sleepers via investigating crack initiation length. Eng Fail Anal 58:267–280. doi: 10.1016/j.engfailanal.2015.09.007 CrossRefGoogle Scholar
  33. 33.
    Rezaie F, Shiri MR, Farnam SM (2012) Experimental and numerical studies of longitudinal crack control for pre-stressed concrete sleepers. Eng Fail Anal 26:21–30. doi: 10.1016/j.engfailanal.2012.07.001 CrossRefGoogle Scholar
  34. 34.
    Carpio J, Casado JA, Carrascal I (2004) Influencia en la resistencia a fatiga del tipo de armadura y su anclaje empleado en traviesas monobloque de hormigón pretensado. An. Mecánica la Fract. 21Google Scholar
  35. 35.
    Kaewunruen S, Remennikov AM (2011) Experiments into impact behaviour of railway prestressed concrete sleepers. Eng Fail Anal 18:2305–2315. doi: 10.1016/j.engfailanal.2011.08.007 CrossRefGoogle Scholar
  36. 36.
    Kaewunruen S, Remennikov AM (2009) Progressive failure of prestressed concrete sleepers under multiple high-intensity impact loads. Eng Struct 31:2460–2473. doi: 10.1016/j.engstruct.2009.06.002 CrossRefGoogle Scholar
  37. 37.
    Kaewunruen S, Remennikov AM (2009) Impact capacity of railway prestressed concrete sleepers. Eng Fail Anal 16:1520–1532. doi: 10.1016/j.engfailanal.2008.09.026 CrossRefGoogle Scholar
  38. 38.
    Bezgin NÖ (2015) Climate effects on the shoulder width measurements of prestressed concrete high speed railway sleepers of ballasted tracks. Measurement 75:201–209. doi: 10.1016/j.measurement.2015.07.057 CrossRefGoogle Scholar
  39. 39.
    Hasheminezhad A (2015) Analytical study on longitudinal crack control for B70 mono-block pre-stressed concrete sleepers. Eng Fail Anal 49:1–10. doi: 10.1016/j.engfailanal.2014.12.005 CrossRefGoogle Scholar
  40. 40.
    Mohammadzadeh S, Vahabi E (2011) Time-dependent reliability analysis of B70 pre-stressed concrete sleeper subject to deterioration. Eng Fail Anal 18:421–432. doi: 10.1016/j.engfailanal.2010.09.030 CrossRefGoogle Scholar
  41. 41.
    Remennikov AM, Kaewunruen S (2014) Experimental load rating of aged railway concrete sleepers. Eng Struct 76:147–162. doi: 10.1016/j.engstruct.2014.06.032 CrossRefGoogle Scholar
  42. 42.
    Koh T-H, Bae Y-H, Hwang S-K, Sagong M (2012) Dynamic performance of eco-friendly prestressed concrete sleeper. ACI Spec Publ 289:1–18Google Scholar
  43. 43.
    Koh T, Han S, Sagong M (2001) Developement of eco-friendly PC sleeper using slag. In: 9th World Congress Railway ResearchGoogle Scholar
  44. 44.
    Koh T, Hwang S (2013) Field performance and durability of eco-friendly prestressed concrete sleeper. In: The third international conference on sustainable construction materials and technologiesGoogle Scholar
  45. 45.
    Shojaei M, Behfarnia K, Mohebi R (2015) Application of alkali-activated slag concrete in railway sleepers. Mater Des 69:89–95. doi: 10.1016/j.matdes.2014.12.051 CrossRefGoogle Scholar
  46. 46.
    European Committee for Standardization (2009) EN 13230-2 Railway applications—Track-Concrete sleepers and bearers Part 2: Prestressed monoblock sleepers. 32Google Scholar
  47. 47.
    ADIF (2009) Spanish Technical Specifications of Prestressed Concrete Monoblock Sleepers (ET 03.360.571.8). MadridGoogle Scholar
  48. 48.
    Hansen TC (1992) Recycling of demolished concrete and masonry. E&FN Spon, London (UK)Google Scholar
  49. 49.
    Nagataki S, Gokce A, Saeki T, Hisada M (2004) Assessment of recycling process induced damage sensitivity of recycled concrete aggregates. Cem Concr Res 34:965–971. doi: 10.1016/j.cemconres.2003.11.008 CrossRefGoogle Scholar
  50. 50.
    Padmini AK, Ramamurthy K, Mathews MS (2009) Influence of parent concrete on the properties of recycled aggregate concrete. Constr Build Mater 23:829–836. doi: 10.1016/j.conbuildmat.2008.03.006 CrossRefGoogle Scholar
  51. 51.
    Gokce A, Nagataki S, Saeki T, Hisada M (2011) Identification of frost-susceptible recycled concrete aggregates for durability of concrete. Constr Build Mater 25:2426–2431. doi: 10.1016/j.conbuildmat.2010.11.054 CrossRefGoogle Scholar
  52. 52.
    Fuller WB, Thompson SE (1907) The laws of proportioniong concrete. Trans ASCE 59:67–143Google Scholar
  53. 53.
    Neville AM (2000) Properties of concrete, Longman 981-4053-56-2. Pearson Education AsiaGoogle Scholar
  54. 54.
    Eurocode 2 (2004) Design of concrete structures, European Committee for Standardization (CEN), BrusselsGoogle Scholar
  55. 55.
    SIA262 (2003) Concrete structures. Swiss Society of Engineers and Architects (SIA), ZurichGoogle Scholar
  56. 56.
    Wardeh G, Ghorbel E, Gomart H (2014) Mix design and properties of recycled aggregate concretes: applicability of Eurocode 2. Int J Concr Struct Mater 9:1–20. doi: 10.1007/s40069-014-0087-y CrossRefGoogle Scholar

Copyright information

© RILEM 2016

Authors and Affiliations

  • Andreu Gonzalez-Corominas
    • 1
  • Miren Etxeberria
    • 1
  • Ignasi Fernandez
    • 2
  1. 1.Department of Civil and Environmental EngineeringPolytechnic University of CataloniaBarcelonaSpain
  2. 2.Department of Civil and Environmental EngineeringChalmers University of TechnologyGothenburgSweden

Personalised recommendations