Materials and Structures

, 50:60 | Cite as

Ultrasonic nondestructive evaluation of alkali–silica reaction damage in concrete prism samples

  • Taeho Ju
  • Jan D. Achenbach
  • Laurence J. Jacobs
  • Maria Guimaraes
  • Jianmin Qu
Original Article


This paper presents a study that used ultrasonic techniques to nondestructively evaluate (NDE) the damage induced by alkali-silica reaction (ASR) in concrete. The study was conducted on concrete prism samples that contained reactive aggregates and were subjected to different ASR conditioning. The ultrasonic NDE techniques used in the study included measuring wave speed, attenuation and the amplitude of mixed wave in order to accurately calculate the acoustic nonlinearity parameter. Results of the study show that ASR damage reduces wave speed and increases the wave attenuation in concrete. However, neither wave speed nor attenuation is sensitive enough to ASR damage to be considered a good measure for the quantitative NDE of ASR damage in concrete. The acoustic nonlinearity parameter, on the other hand, shows a greater sensitivity to ASR damage, and can thus be used to nondestructively track ASR damage in concrete. However, due to the significant attenuation caused by ASR induced microcracks and scattering by the aggregates, attenuation measurements also need to be conducted in order to accurately measure the acoustic nonlinearity parameter. Finally, destructive tests were conducted to measure the compressive strength of the concrete prisms subjected to different ASR conditioning. It is found that the measured acoustic nonlinearity parameter is well-correlated with the reduction of the compressive strength induced by ASR damage.


Alkali–silica reaction Ultrasonic nondestructive evaluation Wave attenuation Nonlinear wave mixing 



This work was supported in part by the US National Science Foundation through CMMI-1363221 and in part by the US Department of Energy’s Nuclear Energy University Program through Standard Research Contracts 00126931 and 00127346.


  1. 1.
    Glasser LD, Kataoka N (1981) The chemistry of ‘alkali-aggregate’reaction. Cem Concr Res 11:1–9CrossRefGoogle Scholar
  2. 2.
    Saouma V, Perotti L (2006) Constitutive model for alkali-aggregate reactions. ACI Mater J 103:194Google Scholar
  3. 3.
    Smaoui N, Bissonnette B, Bérubé M, Fournier B (2007) Stresses induced by alkali-silica reactivity in prototypes of reinforced concrete columns incorporating various types of reactive aggregates. Can J Civ Eng 34:1554–1566CrossRefGoogle Scholar
  4. 4.
    Bungey J (1997) Ultrasonic testing to identify alkali-silica reaction in concrete. NDT and E Int 4:263Google Scholar
  5. 5.
    Hobbs D (1986) Deleterious expansion of concrete due to alkali-silica reaction: influence of PFA and slag. Mag Concr Res 38:191–205CrossRefGoogle Scholar
  6. 6.
    Nogueira CL, Willam KJ (2001) Ultrasonic testing of damage in concrete under uniaxial compression. ACI Mater J 98:265Google Scholar
  7. 7.
    Rivard P, Saint-Pierre F (2009) Assessing alkali-silica reaction damage to concrete with non-destructive methods: from the lab to the field. Constr Build Mater 23:902–909CrossRefGoogle Scholar
  8. 8.
    Saint-Pierre F, Rivard P, Ballivy G (2007) Measurement of alkali–silica reaction progression by ultrasonic waves attenuation. Cem Concr Res 37:948–956CrossRefGoogle Scholar
  9. 9.
    Warnemuende K, Wu H-C (2004) Actively modulated acoustic nondestructive evaluation of concrete. Cem Concr Res 34:563–570CrossRefGoogle Scholar
  10. 10.
    Cantrell JH (2004) Substructural organization, dislocation plasticity and harmonic generation in cyclically stressed wavy slip metals. Proc R Soc Lond Ser A: Math Phys Eng Sci 460:757–780CrossRefMATHGoogle Scholar
  11. 11.
    Herrmann J, Kim J-Y, Jacobs LJ, Qu J, Littles JW, Savage MF (2006) Assessment of material damage in a nickel-base superalloy using nonlinear Rayleigh surface waves. J Appl Phys 99:124913CrossRefGoogle Scholar
  12. 12.
    Kim J-Y, Jacobs LJ, Qu J, Littles JW (2006) Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. J Acoust Soc Am 120:1266–1273CrossRefGoogle Scholar
  13. 13.
    Müller MF, Kim J-Y, Qu J, Jacobs LJ (2010) Characteristics of second harmonic generation of Lamb waves in nonlinear elastic plates. J Acoust Soc Am 127:2141–2152CrossRefGoogle Scholar
  14. 14.
    Matlack K, Kim J-Y, Jacobs L, Qu J (2014) Review of second harmonic generation measurement techniques for material state determination in metals. J Nondestr Eval 34:1–23Google Scholar
  15. 15.
    Nagy PB (1998) Fatigue damage assessment by nonlinear ultrasonic materials characterization. Ultrasonics 36:375–381CrossRefGoogle Scholar
  16. 16.
    Chen J, Jayapalan AR, Kim J-Y, Kurtis KE, Jacobs LJ (2010) Rapid evaluation of alkali–silica reactivity of aggregates using a nonlinear resonance spectroscopy technique. Cem Concr Res 40:914–923CrossRefGoogle Scholar
  17. 17.
    Leśnicki KJ, Kim J-Y, Kurtis KE, Jacobs LJ (2011) Characterization of ASR damage in concrete using nonlinear impact resonance acoustic spectroscopy technique. NDT E Int 44:721–727CrossRefGoogle Scholar
  18. 18.
    Leśnicki KJ, Kim J-Y, Kurtis KE, Jacobs LJ (2013) Assessment of alkali–silica reaction damage through quantification of concrete nonlinearity. Mater Struct 46:497–509CrossRefGoogle Scholar
  19. 19.
    Moradi-Marani F, Kodjo SA, Rivard P, Lamarche C-P (2014) Nonlinear acoustic technique of time shift for evaluation of alkali-silica reaction damage in concrete structures. ACI Mater J 111:581Google Scholar
  20. 20.
    Payan C, Garnier V, Moysan J, Johnson P (2007) Applying nonlinear resonant ultrasound spectroscopy to improving thermal damage assessment in concrete. J Acoust Soc Am 121:EL125–EL130CrossRefGoogle Scholar
  21. 21.
    Haha MB, Gallucci E, Guidoum A, Scrivener KL (2007) Relation of expansion due to alkali silica reaction to the degree of reaction measured by SEM image analysis. Cem Concr Res 37:1206–1214CrossRefGoogle Scholar
  22. 22.
    Swamy RN, Alasali MM (1988) Engineering properties of concrete affected by alkali-silica reaction. ACI Mater J 85:367–374Google Scholar
  23. 23.
    Liu M, Tang G, Jacobs LJ, Qu J (2012) Measuring acoustic nonlinearity parameter using collinear wave mixing. J Appl Phys 112:4908. doi: 10.1063/1.4739746 Google Scholar
  24. 24.
    Liu M, Tang G, Jacobs LJ, Qu J (2012) A nonlinear wave mixing method for detecting alkali-silica reactivity of aggregates. AIP Conf Proc 1430:1524–1531. doi: 10.1063/1.4716396 CrossRefGoogle Scholar
  25. 25.
    Cash W, Cai W (2011) Dislocation contribution to acoustic nonlinearity: the effect of orientation-dependent line energy. J Appl Phys 109:014915CrossRefGoogle Scholar
  26. 26.
    Kim J-Y, Qu J, Jacobs L, Littles J, Savage M (2006) Acoustic nonlinearity parameter due to microplasticity. J Nondestr Eval 25:28–36CrossRefGoogle Scholar
  27. 27.
    Novak A, Bentahar M, Tournat V, El Guerjouma R, Simon L (2012) Nonlinear acoustic characterization of micro-damaged materials through higher harmonic resonance analysis. NDT E Int 45:1–8CrossRefGoogle Scholar
  28. 28.
    Hurley DH, Telschow KL, Cottle D (2002) Probing acoustic nonlinearity on lengths scales comparable to material grain dimensions. Ultrasonics 40:617–620CrossRefGoogle Scholar
  29. 29.
    Taylor LH, Rollins FR Jr (1964) Ultrasonic study of three-phonon interactions I. Theory Phys Rev 136:A591Google Scholar
  30. 30.
    Jones GL, Kobett DR (1963) Interaction of elastic waves in an isotropic solid. J Acoust Soc Am 35:5–10MathSciNetCrossRefGoogle Scholar
  31. 31.
    Rollins FR Jr (1963) Interaction of ultrasonic waves in solid media. Appl Phys Lett 2:147–148CrossRefGoogle Scholar
  32. 32.
    Croxford AJ, Wilcox PD, Drinkwater BW, Nagy PB (2009) The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue. J Acoust Soc Am 126:El117–El122CrossRefGoogle Scholar
  33. 33.
    Demcenko A, Akkerman R, Nagy PB, Loendersloot R (2012) Non-collinear wave mixing for non-linear ultrasonic detection of physical ageing in PVC. NDT E Int 49:34–39. doi: 10.1016/j.ndteint.2012.03.005 CrossRefGoogle Scholar
  34. 34.
    Demcenko A, Koissin V, Korneev VA (2014) Noncollinear wave mixing for measurement of dynamic processes in polymers: physical ageing in thermoplastics and epoxy cure. Ultrasonics 54:684–693. doi: 10.1016/j.ultras.2013.09.011 CrossRefGoogle Scholar
  35. 35.
    Johnson PA, Shankland TJ (1989) Nonlinear generation of elastic-waves in granite and sandstone—continuous wave and travel time observations. J Geophys Res-Solid Earth Planets 94:17729–17733. doi: 10.1029/JB094iB12p17729 CrossRefGoogle Scholar
  36. 36.
    Johnson PA, Shankland TJ, Oconnell RJ, Albright JN (1987) Nonlinear generation of elastic-waves in crystalline rock. J Geophys Res-Solid Earth Planets 92:3597–3602. doi: 10.1029/JB092iB05p03597 CrossRefGoogle Scholar
  37. 37.
    Tang G, Liu M, Jacobs LJ, Qu J (2014) Detecting localized plastic strain by a scanning collinear wave mixing method. J Nondestr Eval 33:196–204. doi: 10.1007/s10921-014-0224-1 CrossRefGoogle Scholar
  38. 38.
    Chen Z, Tang G, Zhao Y, Jacobs LJ, Qu J (2014) Mixing of collinear plane wave pulses in elastic solids with quadratic nonlinearity. J Acoust Soc Am 136:2389–2404. doi: 10.1121/1.4896567 CrossRefGoogle Scholar
  39. 39.
    Rose JL (2004) Ultrasonic waves in solid media. Cambridge University Press, CambridgeGoogle Scholar
  40. 40.
    Royer D, Dieulesaint E (2000) Elastic waves in solids, vol 1. Springer, BerlinCrossRefMATHGoogle Scholar
  41. 41.
    Kim JY, Qu J, Jacobs LJ, Littles JW, Savage MF (2006) Acoustic nonlinearity parameter due to microplasticity. J Nondestr Eval 25:29–37. doi: 10.1007/s10921-006-0004-7 CrossRefGoogle Scholar
  42. 42.
    International A (2008) Standard test method for determination of length change of concrete due to alkali-silica reaction, vol ASTM C1293-08b. ASTM International, West Conshohocken. doi: 10.1520/C1293-08B Google Scholar
  43. 43.
    Popovics S, Rose JL, Popovics JS (1990) The behaviour of ultrasonic pulses in concrete. Cem Concr Res 20:259–270. doi: 10.1016/0008-8846(90)90079-D CrossRefGoogle Scholar
  44. 44.
    International A (2013) Standard test method for measurement of ultrasonic attenuation coefficients of advanced ceramics by pulse-echo contact technique, vol ASTM C1332-01(2013). ASTM International, West Conshohocken. doi: 10.1520/C1332-01R13 Google Scholar
  45. 45.
    Mažeika L, Šliteris R, Vladišauskas A (2010) Measurement of velocity and attenuation for ultrasonic longitudinal waves in the polyethylene samples. Ultrasound 65Google Scholar
  46. 46.
    Philippidis TP, Aggelis DG (2005) Experimental study of wave dispersion and attenuation in concrete. Ultrasonics 43:584–595. doi: 10.1016/j.ultras.2004.12.001 CrossRefMATHGoogle Scholar

Copyright information

© RILEM 2016

Authors and Affiliations

  • Taeho Ju
    • 1
  • Jan D. Achenbach
    • 1
  • Laurence J. Jacobs
    • 2
  • Maria Guimaraes
    • 3
  • Jianmin Qu
    • 1
    • 4
  1. 1.Department of Mechanical EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.College of EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Electric Power Research Institute (EPRI)CharlotteUSA
  4. 4.Department of Mechanical EngineeringTufts UniversityMedfordUSA

Personalised recommendations