Advertisement

Materials and Structures

, Volume 49, Issue 12, pp 5169–5181 | Cite as

Influence of steel–concrete interface defects induced by top-casting on development of chloride-induced corrosion in RC beams under sustained loading

  • Linwen Yu
  • Raoul François
  • Richard Gagné
Original Article

Abstract

This paper discusses the effect of defects in a steel–concrete interface under horizontal top-cast steel bars on the development of corrosion in reinforced concrete beams under sustained loading exposed to a chloride environment. The work was based on four beams exposed to climate accelerated natural corrosion for 29 months. The corrosion-induced cracking patterns were drawn after 8 and 24 months of exposure to the chloride environment, and cracking maps with crack widths were recorded at 29 months. The experimental results show that corrosion-induced cracks always developed much more quickly along the top-cast steel bars due to the existence of top-casting-induced defects. Such defects formed at the steel–concrete interface under horizontal top-cast bars due to bleeding, segregation and settlement of fresh concrete, and they were favorable to both initiation and propagation of corrosion.

Keywords

Corrosion Chloride Defects Steel–concrete interface Load-induced damage 

References

  1. 1.
    Bertolini L, Elsener B, Pedeferri P, Redaelli E, Polder RB (2004) Corrosion of steel in concrete: prevention, diagnosis, repair, WILEY-VCH Verlag GmbH & Co. KGaA. http://books.google.fr/books?hl=zh-CN&lr=&id=IJUR_dLW3LkC&oi=fnd&pg=PP1&dq=corrosion+of+steel+in+concrete+luca+bertolini&ots=ZRc1iddT1_&sig=XJmf4x-sCxEBth0jNLQDZ7_uidA. Accessed 25 Sept 2013)
  2. 2.
    Tuutti K (1982) Corrosion of steel in concrete, Swedish Cement and Concrete Research InstituteGoogle Scholar
  3. 3.
    Sun W, Zhang YS, Liu SF, Zhang YM (2004) The influence of mineral admixtures on resistance to corrosion of steel bars in green high-performance concrete. Cem Concr Res 34:1781–1785. doi: 10.1016/j.cemconres.2004.01.008 CrossRefGoogle Scholar
  4. 4.
    Scott A, Alexander MG (2007) The influence of binder type, cracking and cover on corrosion rates of steel in chloride-contaminated concrete. Mag Concr Res 59:495–505. doi: 10.1680/macr.2007.59.7.495 CrossRefGoogle Scholar
  5. 5.
    Balabanic G, Bicanic N, Durekovic A (1996) The influence of w/c ratio, concrete cover thickness and degree of water saturation on the corrosion rate of reinforcing steel in concrete. Cem Concr Res 26:761–769. doi: 10.1016/S0008-8846(96)85013-7 CrossRefGoogle Scholar
  6. 6.
    Ryou JS, Ann KY (2008) Variation in the chloride threshold level for steel corrosion in concrete arising from different chloride sources. Mag Concr Res 60:177–187. doi: 10.1680/macr.2008.60.3.177 CrossRefGoogle Scholar
  7. 7.
    Mangat P, Molloy B (1992) Factors influencing chloride-induced corrosion of reinforcement in concrete. Mater Struct 25:404–411. doi: 10.1007/BF02472256 CrossRefGoogle Scholar
  8. 8.
    Mohammed TU, Otsuki N, Hamada H, Yamaji T (2002) Chloride-induced corrosion of steel bars in concrete with presence of gap at steel-concrete interface. ACI Mater J 99. http://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&i=11707. Accessed 16 Sept 2015
  9. 9.
    Sangoju B, Gettu R, Bharatkumar B, Neelamegam M (2011) Chloride-induced corrosion of steel in cracked OPC and PPC concretes: experimental study. J Mater Civ Eng 23:1057–1066. doi: 10.1061/(ASCE)MT.1943-5533.0000260 CrossRefGoogle Scholar
  10. 10.
    Michel A, Solgaard AOS, Pease BJ, Geiker MR, Stang H, Olesen JF (2013) Experimental investigation of the relation between damage at the concrete-steel interface and initiation of reinforcement corrosion in plain and fibre reinforced concrete. Corros Sci 77:308–321. doi: 10.1016/j.corsci.2013.08.019 CrossRefGoogle Scholar
  11. 11.
    Şahmaran M, Yaman İÖ (2008) Influence of transverse crack width on reinforcement corrosion initiation and propagation in mortar beams. Can J Civ Eng 35:236–245. doi: 10.1139/L07-117 CrossRefGoogle Scholar
  12. 12.
    François R, Arliguie G (1998) Influence of service cracking on reinforcement steel corrosion. J Mater Civ Eng 10:14–20. doi: 10.1061/(ASCE)0899-1561(1998)10:1(14) CrossRefGoogle Scholar
  13. 13.
    Arya C, OforiDarko FK (1996) Influence of crack frequency on reinforcement corrosion in concrete. Cem Concr Res 26:345–353. doi: 10.1016/S0008-8846(96)85022-8 CrossRefGoogle Scholar
  14. 14.
    Alexander MG, Otieno MB, Beushausen H-D (2010) Corrosion in cracked and uncracked concrete—influence of crack width, concrete quality and crack reopening. Mag Concr Res 62:393–404. doi: 10.1680/macr.2010.62.6.393 CrossRefGoogle Scholar
  15. 15.
    Nelson S (2013) Corrosion of reinforcement steel in concrete- threshold values and ion distributions at the concrete steel interface. Chalmers University of TechnologyGoogle Scholar
  16. 16.
    Yu L, François R, Dang VH, L’Hostis V, Gagné R (2015) Development of chloride-induced corrosion in pre-cracked RC beams under sustained loading: effect of load-induced cracks, concrete cover, and exposure conditions. Cem Concr Res 67:246–258. doi: 10.1016/j.cemconres.2014.10.007 CrossRefGoogle Scholar
  17. 17.
    Horne AT, Richardson IG, Brydson RMD (2007) Quantitative analysis of the microstructure of interfaces in steel reinforced concrete. Cem Concr Res 37:1613–1623. doi: 10.1016/j.cemconres.2007.08.026 CrossRefGoogle Scholar
  18. 18.
    Soylev TA, Francois R (2005) Corrosion of reinforcement in relation to presence of defects at the interface between steel and concrete. J Mater Civ Eng 17:447–455. doi: 10.1061/(ASCE)0899-1561(2005)17:4(447) CrossRefGoogle Scholar
  19. 19.
    Hartt WH, Nam J (2008) Effect of cement alkalinity on chloride threshold and time-to-corrosion of reinforcing steel in concrete. Corrosion 64:671–680. doi: 10.5006/1.3279929 CrossRefGoogle Scholar
  20. 20.
    Zhang R, Castel A, Francois R (2011) Influence of steel-concrete interface defects owing to the top-bar effect on the chloride-induced corrosion of reinforcement. Mag Concr Res 63:773–781. doi: 10.1680/macr.2011.63.10.773 CrossRefGoogle Scholar
  21. 21.
    Soylev TA, Francois R (2003) Quality of steel-concrete interface and corrosion of reinforcing steel. Cem Concr Res 33:1407–1415. doi: 10.1016/S0008-8846(03)00087-5 CrossRefGoogle Scholar
  22. 22.
    EN 1992-1-1 (2004) Eurocode 2: design of concrete structures—Part 1-1: general rules and rules for buildingsGoogle Scholar
  23. 23.
    Zhao Y, Wu Y, Jin W (2013) Distribution of millscale on corroded steel bars and penetration of steel corrosion products in concrete. Corros Sci 66:160–168. doi: 10.1016/j.corsci.2012.09.014 CrossRefGoogle Scholar
  24. 24.
    Khayat KH (1998) Use of viscosity-modifying admixture to reduce top- bar effect of anchored bars cast with fluid concrete. Mater J 95:158–167Google Scholar
  25. 25.
    Yu H, Shi X, Hartt WH, Lu B (2010) Laboratory investigation of reinforcement corrosion initiation and chloride threshold content for self-compacting concrete. Cem Concr Res 40:1507–1516. doi: 10.1016/j.cemconres.2010.06.004 CrossRefGoogle Scholar
  26. 26.
    Ann KY, Song H-W (2007) Chloride threshold level for corrosion of steel in concrete. Corros Sci 49:4113–4133. doi: 10.1016/j.corsci.2007.05.007 CrossRefGoogle Scholar
  27. 27.
    Dang VH, François R (2013) Influence of long-term corrosion in chloride environment on mechanical behaviour of RC beam. Eng Struct 48:558–568. doi: 10.1016/j.engstruct.2012.09.021 CrossRefGoogle Scholar
  28. 28.
    Zhu W (2014) Effect of corrosion on the mechanical properties of the corroded reinforcement and the residual structural performance of the corroded beams. Thesis, INSA-Toulouse. http://www.theses.fr/2013ISAT0039. Accessed 9 May 2014
  29. 29.
    CEB, Bulletin d’information n°3, Durable concrete structures, CEB General Task Group 20, Durability and service life on concrete structures, Thomas Telford 1989., (n.d.)Google Scholar
  30. 30.
    Helland S (2010) Design for service life: implementation of fib Model Code, rules in the operational code ISO 16204. Struct Concr 14(2013):10–18. doi: 10.1002/suco.201200021 Google Scholar
  31. 31.
    Hornbostel K, Angst UM, Elsener B, Larsen CK, Geiker MR (2015) On the limitations of predicting the ohmic resistance in a macro-cell in mortar from bulk resistivity measurements. Cem Concr Res 76:147–158. doi: 10.1016/j.cemconres.2015.05.023 CrossRefGoogle Scholar

Copyright information

© RILEM 2016

Authors and Affiliations

  1. 1.Université de Toulouse, UPS, INSA, LMDCToulouseFrance
  2. 2.Université de SherbrookeQuébecCanada

Personalised recommendations