Materials and Structures

, Volume 49, Issue 8, pp 3423–3434 | Cite as

The resistance to high temperature of magnesia phosphate cement paste containing wollastonite

  • Xiaojian Gao
  • Ailian Zhang
  • Shuangxin Li
  • Bochao Sun
  • Linchun Zhang
Original Article


This paper aims to study the effect of wollastonite addition on the behavior of magnesium ammonium phosphate cement (MAPC) and magnesium potassium phosphate cement (MKPC) pastes exposed to different high temperatures. Different dosages of wollastonite were added to replace MgO powder in these two types of magnesia phosphate cements. The paste specimens were exposed to 105 °C for 24 h and to different temperatures of 200, 400, 600, 800 and 1000 °C for 3 h and then cooled to room temperature for different tests including mass loss, visual appearance, compressive strength, mineral composition and microstructure observation. The results show that the specimens containing 10 % wollastonite for both MAPC and MKPC mixtures presents the most improved high temperature resistance due to the excellent heat stability of wollastonite mineral and the refined microstructure. And the addition wollastonite has little influence on the hydration products of these two magnesia phosphate cements. Therefore, the incorporation of wollastonite is a potential method to improve the heat-resistance of MAPC or MKPC.


Magnesia-phosphate cement Wollastonite High temperature Mechanical properties 



This work was supported by the Program for New Century Excellent Talents in University [NCET-12-0157].


  1. 1.
    Abdelrazig BEI, Sharp JH, El-Jazairi B (1988) The chemical composition of mortars made from magnesia-phosphate cement. Cem Concr Res 18(3):415–425. doi: 10.1016/0008-8846(88)90075-0 CrossRefGoogle Scholar
  2. 2.
    Seehra SS, Gupta S, Kumar S (1993) Rapid setting magnesium phosphate cement for quick repair of concrete pavements-characterization and durability aspects. Cem Concr Res 23(2):254–266. doi: 10.1016/0008-8846(93)90090-V CrossRefGoogle Scholar
  3. 3.
    Yang Q, Wu X (1999) Factors influencing properties of phosphate cement-based binder for rapid repair of concrete. Cem Concr Res 29(3):389–396. doi: 10.1016/S0008-8846(98)00230-0 CrossRefGoogle Scholar
  4. 4.
    Yang Q, Zhu B, Wu X (2000) Characteristics and durability test of magnesium phosphate cement-based material for rapid repair of concrete. Mater Struct 33(4):229–234. doi: 10.1007/BF02479332 CrossRefGoogle Scholar
  5. 5.
    Shi C, Yang J, Yang N, Chang Y (2014) Effect of waterglass on water stability of potassium magnesium phosphate cement paste. Cement Concr Compos 53:83–87. doi: 10.1016/j.cemconcomp.2014.03.012 CrossRefGoogle Scholar
  6. 6.
    Every CE (1947) Improvements relating to mouldable compositions. U.K. Patent No. 593 172Google Scholar
  7. 7.
    Halla DA, Stevensb R, Jazairic BE (2001) The effect of retarders on the microstructure and mechanical properties of magnesia-phosphate cement mortar. Cem Concr Res 31(3):455–465. doi: 10.1016/S0008-8846(00)00501-9 CrossRefGoogle Scholar
  8. 8.
    Qiao F, Chau CK, Li Z (2010) Property evaluation of magnesium phosphate cement mortar as patch repair material. Constr Build Mater 24(5):695–700. doi: 10.1016/j.conbuildmat.2009.10.039 CrossRefGoogle Scholar
  9. 9.
    Ribeiro DV, Morelli MR (2009) Influence of the addition of grinding dust to a magnesium phosphate cement matrix. Constr Build Mater 23(9):3094–3102. doi: 10.1016/j.conbuildmat.2009.03.013 CrossRefGoogle Scholar
  10. 10.
    Buj I, Torras J, Rovira M, de Pablo J (2010) Leaching behaviour of magnesium phosphate cements containing high quantities of heavy metals. J Hazard Mater 175(1–3):789–794. doi: 10.1016/j.jhazmat.2009.10.077 CrossRefGoogle Scholar
  11. 11.
    Torras J, Buj I, Rovira M, de Pablo J (2011) Semi-dynamic leaching tests of nickel containing wastes stabilized/solidified with magnesium potassium phosphate cements. J Hazard Mater 186(2–3):1954–1960. doi: 10.1016/j.jhazmat.2010.12.093 CrossRefGoogle Scholar
  12. 12.
    Liu Z, Qian G, Zhou J, Li C, Xu Y, Qin Z (2008) Improvement of ground granulated blast furnace slag on stabilized/solidified of simulated mercury-doped wastes in chemically bonded phosphate ceramics. J Hazard Mater 157(1):146–153. doi: 10.1016/j.jhazmat.2007.12.110 CrossRefGoogle Scholar
  13. 13.
    Kalla P, Rana A, Chad YB, Misra A, Csetenyi L (2015) Durability studies on concrete containing wollastonite. J Clean Prod 87:726–734. doi: 10.1016/j.jclepro.2014.10.038 CrossRefGoogle Scholar
  14. 14.
    Kalla P, Misra A, Gupta RC, Csetenyi L, Gahlot V, Arora A (2013) Mechanical and durability studies on concrete containing wollastonite–fly ash combination. Constr Build Mater 40:1142–1150. doi: 10.1016/j.conbuildmat.2012.09.102 CrossRefGoogle Scholar
  15. 15.
    Wagh AS, Jeong SY (2003) Chemically bonded phosphate ceramics: I, a dissolution model of formation. J Am Ceram Soc 86(11):1838–1844. doi: 10.1111/j.1151-2916.2003.tb03569.x CrossRefGoogle Scholar
  16. 16.
    Colorado HA, Pleitt J, Hiel C, Yang JM, Hahn HT, Castano CH (2012) Wollastonite based-chemically bonded phosphate ceramics with lead oxide contents under gamma irradiation. J Nucl Mater 425(1–3):197–204. doi: 10.1016/j.jnucmat.2011.08.043 CrossRefGoogle Scholar
  17. 17.
    Wagh AS (2013) Ceramicrete/grancrete. Accessed 13 May 2013
  18. 18.
    Bohner M, Landuyt PV, Merkle HP, Lemaitre J (1997) Composition effects on the pH of a hydraulic calcium phosphate cement. J Mater Sci Mater Med 8(11):675–681. doi: 10.1023/A:1018583706335 CrossRefGoogle Scholar
  19. 19.
    Hofmann MP, Young AM, Gbureck U, Nazhat SN, Barralet JE (2006) FTIR-monitoring of a fast setting brushite bone cement: effect of intermediate phases. J Mater Chem 16(31):3199–3206. doi: 10.1039/b603554j CrossRefGoogle Scholar
  20. 20.
    Flautre B, Deschamps M, Delecourt C, Blary MC, Hardouin P (2001) Porous HA ceramic for bone replacement: role of the pores and interconnections-experimental study in the rabbit. J Mater Sci Mater Med 12(8):679–682. doi: 10.1023/A:1011256107282 CrossRefGoogle Scholar
  21. 21.
    Li J, Zhang W, Cao Y (2014) Laboratory evaluation of magnesium phosphate cement paste and mortar for rapid repair of cement concrete pavement. Constr Build Mater 58:122–128. doi: 10.1016/j.conbuildmat.2014.02.015 CrossRefGoogle Scholar
  22. 22.
    Abbona F, Boistelle R (1979) Growth morphology and crystal habit of struvite crystals (MgNH4PO4·6H2O). J Cryst Growth 46(3):339–354. doi: 10.1016/0022-0248(79)90082-4 CrossRefGoogle Scholar
  23. 23.
    Chau CK, Qiao F, Li Z (2011) Microstructure of magnesium potassium phosphate cement. Constr Build Mater 25(6):2911–2917. doi: 10.1016/j.conbuildmat.2010.12.035 CrossRefGoogle Scholar

Copyright information

© RILEM 2015

Authors and Affiliations

  • Xiaojian Gao
    • 1
  • Ailian Zhang
    • 1
    • 2
  • Shuangxin Li
    • 1
  • Bochao Sun
    • 1
  • Linchun Zhang
    • 2
  1. 1.School of Civil EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.School of Civil EngineeringSichuan College of Architectural TechnologyDeyangChina

Personalised recommendations