Materials and Structures

, Volume 49, Issue 4, pp 1157–1164 | Cite as

Plastic strain and stress deterioration of FRP-confined concrete prisms under axial cyclic compression

Original Article


This paper presents the investigation and modeling of plastic strain and stress deterioration of FRP-confined concrete prisms under axial cyclic compression. Also the effect of the cross-section shape of specimens on these parameters is investigated. For this purpose, the experimental results of cyclic stress–strain behavior of circular, square and rectangular concrete prisms confined by FRP-composites are presented and examined. Besides, the effect of repeated complete cycles on the plastic strain and stress deterioration is studied. The results show that the relation between plastic strain and first unloading strain is linear and depends only on the two parameters of concrete strength and the shape of cross-section, but the stress deterioration depends only on the first unloading strain. The predictive formulations for plastic strain and stress deterioration are presented and compared with the experimental results.


FRP Concrete column Cyclic behavior Plastic strain Stress deterioration 


  1. 1.
    Lam L, Teng JG (2004) Behavior and modeling of fiber reinforced polymer-confined concrete. J Struct Eng ASCE 130(11):1713–1723CrossRefGoogle Scholar
  2. 2.
    Mirmiran A, Shahawy M (1997) Behavior of concrete columns confined by fiber composites. J Struct Eng ASCE 123(5):583–590CrossRefGoogle Scholar
  3. 3.
    Xiao Y, Wu H (2000) Compressive behavior of concrete confined by carbon fiber composite jackets. J Mater Civil Eng ASCE 12(2):139–146CrossRefGoogle Scholar
  4. 4.
    Lam L, Teng JG (2003) Design-oriented stress–strain model for FRP-confined concrete. Constr Build Mater 17(6–7):471–489CrossRefGoogle Scholar
  5. 5.
    Samaan M, Mirmiran A, Shahawy M (1998) Model of concrete confined by fiber composite. J Struct Eng ASCE 124(9):1025–1031CrossRefGoogle Scholar
  6. 6.
    Spoelstra MR, Monti G (1999) FRP-confined concrete model. J Compos Constr ASCE 3(3):143–150CrossRefGoogle Scholar
  7. 7.
    Mirmiran A, Shahawy M (1997) Dilation characteristics of confined concrete. Int J Mech Cohesive-Frict Mater 2(3):237–249CrossRefGoogle Scholar
  8. 8.
    Mirmiran A, Shahawy M, Samaan M, El Echary H (1998) Effect of column parameters on FRP-confined concrete. J Compos Constr ASCE 2(4):175–185CrossRefGoogle Scholar
  9. 9.
    Al-Salloum YA (2007) Influence of edge sharpness on the strength of square concrete columns confined with FRP composite laminates. Compos Part B Eng 38:640–650CrossRefGoogle Scholar
  10. 10.
    Wang LM, Wu YF (2008) Effect of corner radius on the performance of CFRP-confined square concrete columns. Eng Struct 30:493–505CrossRefGoogle Scholar
  11. 11.
    Rochette P, Labossière P (2000) Axial testing of rectangular column models confined with composites. J Compos Constr ASCE 4(3):129–136CrossRefGoogle Scholar
  12. 12.
    Wu G, Wu ZS, Lu ZT (2007) Design-oriented stress–strain model for concrete prisms confined with FRP composites. Constr Build Mater 21:1107–1121MathSciNetCrossRefGoogle Scholar
  13. 13.
    Wu YF, Wei YY (2010) Effect of cross-sectional aspect ratio on the strength of CFRP-confined rectangular concrete columns. Eng Struct 32:32–45CrossRefGoogle Scholar
  14. 14.
    Wei YY, Wu YF (2012) Unified stress–strain model of concrete for FRP-confined columns. Constr Build Mater 26:381–392CrossRefGoogle Scholar
  15. 15.
    Abbasnia R, Ziaadiny H (2015) Experimental investigation and strength modeling of CFRP-confined concrete rectangular prisms under axial monotonic compression. Mater Struct. doi: 10.1617/s11527-013-0198-y Google Scholar
  16. 16.
    Ozbakkaloglu T, Lim JC (2013) Axial compressive behavior of FRP-confined concrete: experimental test database and a new design-oriented model. Compos Part B 55:607–634CrossRefGoogle Scholar
  17. 17.
    Vincent T, Ozbakkaloglu T (2013) Influence of fiber orientation and specimen end condition on axial compressive behavior of FRP-confined concrete. Constr Build Mater 47:814–826CrossRefGoogle Scholar
  18. 18.
    Rousakis TC, Rakitzis TD, Karabinis AI (2012) Design-oriented strength model for FRP confined concrete members. ASCE Compos Constr 16(6):615–625CrossRefGoogle Scholar
  19. 19.
    Ozbakkaloglu T, Lim JC, Vincent T (2013) FRP-confined concrete in circular sections: review and assessment of stress-strain models. Eng Struct 49:1068–1088CrossRefGoogle Scholar
  20. 20.
    Nisticò N, Pallini F, Rousakis T, Wu YF, Karabinis A (2014) Peak strength and ultimate strain prediction for FRP confined square and circular concrete sections. Compos Part B 67:543–554CrossRefGoogle Scholar
  21. 21.
    Ilki A, Peker O, Karamuk E, Demir C, Kumbasar N (2008) FRP retrofit of low and medium strength circular and rectangular reinforced concrete columns. J Mater Civ Eng 20(2):169–188. doi: 10.1061/(ASCE)0899-1561 CrossRefGoogle Scholar
  22. 22.
    Jiang J-F, Wu Y-F (2012) Identification of material parameters for Drucker-Prager plasticity model for FRP confined circular concrete columns. Int J Solids Struct 49(3–4):445–456CrossRefGoogle Scholar
  23. 23.
    Yu T, Teng JG, Wong YL, Dong SL (2010) Finite element modeling of confined concrete-I: Drucker-Prager type plasticity model. Eng Struct 32(3):665–679CrossRefGoogle Scholar
  24. 24.
    Rousakis TC, Karabinis AI, Kiousis PD, Tepfers R (2008) Analytical modelling of plastic behavior of uniformly FRP confined concrete members. J Compos Part B 39(7–8):1104–1113CrossRefGoogle Scholar
  25. 25.
    Yu T, Teng JG, Wong YL, Dong SL (2010) Finite element modeling of confined concrete-II: plastic-damage model. Eng Struct 32(3):680–691CrossRefGoogle Scholar
  26. 26.
    Shao Y, Zhu Z, Mirmiran A (2006) Cyclic modeling of FRP-confined concrete with improved ductility. Cem Concr Compos 28:959–968CrossRefGoogle Scholar
  27. 27.
    Valdmanis V, De Lorenzis L, Rousakis T, Tepfers R (2007) Behavior and capacity of CFRP-confined concrete cylinders subjected to monotonic and cyclic axial compressive load. Struct Concr 8(4):187CrossRefGoogle Scholar
  28. 28.
    Lam L, Teng JG (2009) Stress–strain model for FRP-confined concrete under cyclic axial compression. Eng Struct 31:308–321CrossRefGoogle Scholar
  29. 29.
    Abbasnia R, Ziaadiny H (2010) Behavior of concrete prisms confined with FRP composites under axial cyclic compression. Eng Struct 32:648–655CrossRefGoogle Scholar
  30. 30.
    Abbasnia R, Ahmadi R, Ziaadiny H (2012) Effect of confinement level, aspect ratio and concrete strength on the cyclic stress–strain behavior of FRP-confined concrete prisms. Compos Part B 43(2):825–831CrossRefGoogle Scholar
  31. 31.
    Abbasnia R, Hosseinpour F, Rostamian M, Ziaadiny H (2012) Effect of corner radius on stress–strain behavior of FRP confined prisms under axial cyclic compression. Eng Struct 40:529–535CrossRefGoogle Scholar
  32. 32.
    Abbasnia R, Hosseinpour F, Rostamian M, Ziaadiny H (2013) Cyclic and monotonic behavior of FRP confined concrete rectangular prisms with different aspect ratios. Constr Build Mater 40:118–125CrossRefGoogle Scholar
  33. 33.
    Wang Z, Wang D, Scott T, Smith T, Lu D (2012a) CFRP confined square columns. I: experimental investigation. J Compos Constr 16:150. doi: 10.1061/(ASCE)CC.1943-5614.0000245 CrossRefGoogle Scholar
  34. 34.
    Wang Z, Wang D, Scott T, Smith T, Lu D (2012b) CFRP-confined square columns. II: cyclic axial compression stress-strain model. J Compos Constr 16:161–170. doi: 10.1061/(ASCE)CC.1943-5614.0000246 CrossRefGoogle Scholar
  35. 35.
    Rousakis TC, Karabinis AI (2012) Adequately FRP confined reinforced concrete columns under axial compressive monotonic or cyclic loading. RILEM Mater Struct 45(7):957–975CrossRefGoogle Scholar
  36. 36.
    Sakai J, Kawashima K (2006) Unloading and reloading stress–strain model for confined concrete. J Struct Eng ASCE 132(1):112–122CrossRefGoogle Scholar
  37. 37.
    Karsan ID, Jirsa JO (1969) Behavior of concrete under compressive loadings. J Struct Eng Div ASCE 95(ST12):2543–2563Google Scholar
  38. 38.
    Sinha BP, Gerstle KH, Tulin LG (1964) Stress–strain relations for concrete under cyclic loading. ACI J 61(2):195–211Google Scholar
  39. 39.
    ASTM D3039/D3039M–95 (1995) Standard test method for tensile properties of polymer matrix composite materials. Annual Book of ASTM Standards 1995, vol 14.02, American Society for Testing and Materials, West ConshohockenGoogle Scholar

Copyright information

© RILEM 2015

Authors and Affiliations

  1. 1.Department of Civil EngineeringVali-e-Asr University of RafsanjanRafsanjanIran

Personalised recommendations