Materials and Structures

, Volume 48, Issue 3, pp 517–529 | Cite as

Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders

  • Susan A. Bernal
  • John L. Provis
  • Rupert J. Myers
  • Rackel San Nicolas
  • Jannie S. J. van Deventer
Original Article

Abstract

Multi-technique characterisation of sodium carbonate-activated blast furnace slag binders was conducted in order to determine the influence of the carbonate groups on the structural and chemical evolution of these materials. At early age (<4 days) there is a preferential reaction of Ca2+ with the CO3 2− from the activator, forming calcium carbonates and gaylussite, while the aluminosilicate component of the slag reacts separately with the sodium from the activator to form zeolite NaA. These phases do not give the high degree of cohesion necessary for development of high early mechanical strength, and the reaction is relatively gradual due to the slow dissolution of the slag under the moderate pH conditions introduced by the Na2CO3 as activator. Once the CO3 2− is exhausted, the activation reaction proceeds in similar way to an NaOH-activated slag binder, forming the typical binder phases calcium aluminium silicate hydrate and hydrotalcite, along with Ca-heulandite as a further (Ca,Al)-rich product. This is consistent with the significant gain in compressive strength and reduced porosity observed after 3 days of curing. The high mechanical strength and reduced permeability developed in these materials beyond 4 days of curing elucidate that Na2CO3-activated slag can develop desirable properties for use as a building material, although the slow early strength development is likely to be an issue in some applications. These results suggest that the inclusion of additions which could control the preferential consumption of Ca2+ by the CO3 2− might accelerate the reaction kinetics of Na2CO3-activated slag at early times of curing, enhancing the use of these materials in engineering applications.

Keywords

Alkali-activated slag Sodium carbonate X-ray diffraction Nuclear magnetic resonance X-ray microtomography 

Notes

Acknowledgments

This work has been funded by the Australian Research Council, through a Linkage Project cosponsored by Zeobond Pty Ltd, including partial funding through the Particulate Fluids Processing Centre. We wish to thank Adam Kilcullen and David Brice for preparation of pastes specimens, John Gehman for his assistance in NMR data collection and Volker Rose and Xianghui Xiao for assistance in the data collection and processing on the 2BM instrument. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. The work of JLP and SAB received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement #335928 (GeopolyConc), and from the University of Sheffield.

References

  1. 1.
    van Deventer JSJ, Provis JL, Duxson P (2012) Technical and commercial progress in the adoption of geopolymer cement. Miner Eng 29:89–104CrossRefGoogle Scholar
  2. 2.
    Provis JL, van Deventer JSJ (2014) Alkali-activated materials: state-of-the-art report RILEM TC 224-AAM. Springer, DordrechtCrossRefGoogle Scholar
  3. 3.
    Provis JL (2014) Green concrete or red herring? – the future of alkali-activated materials. Adv Appl Ceram. doi: 10.1179/1743676114Y.0000000177
  4. 4.
    Provis JL (2014) Geopolymers and other alkali activated materials - Why, how, and what? Mater Struct 47(1):11–25CrossRefGoogle Scholar
  5. 5.
    Wang S-D, Pu X-C, Scrivener KL, Pratt PL (1995) Alkali-activated slag cement and concrete: a review of properties and problems. Adv Cem Res 7(27):93–102CrossRefGoogle Scholar
  6. 6.
    Puertas F (1995) Cementos de escoria activados alcalinamente: situación actual y perspectivas de futuro. Mater Constr 45(239):53–64CrossRefGoogle Scholar
  7. 7.
    Juenger MCG, Winnefeld F, Provis JL, Ideker J (2011) Advances in alternative cementitious binders. Cem Concr Res 41(12):1232–1243CrossRefGoogle Scholar
  8. 8.
    Duxson P, Provis JL (2008) Designing precursors for geopolymer cements. J Am Ceram Soc 91(12):3864–3869CrossRefGoogle Scholar
  9. 9.
    Shi C, Krivenko PV, Roy DM (2006) Alkali-Activated Cements and Concretes. Taylor & Francis, AbingdonCrossRefGoogle Scholar
  10. 10.
    Provis JL, Bernal SA (2014) Geopolymers and related alkali-activated materials. Annu Rev Mater Res 44(1):299–327Google Scholar
  11. 11.
    Wang SD, Scrivener KL, Pratt PL (1994) Factors affecting the strength of alkali-activated slag. Cem Concr Res 24(6):1033–1043CrossRefGoogle Scholar
  12. 12.
    Živica V (2007) Effects of type and dosage of alkaline activator and temperature on the properties of alkali-activated slag mixtures. Constr Build Mater 21(7):1463–1469CrossRefGoogle Scholar
  13. 13.
    Fernández-Jiménez A, Puertas F (2003) Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements. Adv Cem Res 15(3):129–136CrossRefGoogle Scholar
  14. 14.
    Shi C, On the state and role of alkalis during the activation of alkali-activated slag cement. In: Proceedings of the 11th International Congress on the Chemistry of Cement, Durban, South Africa, 2003Google Scholar
  15. 15.
    Song S, Sohn D, Jennings HM, Mason TO (2000) Hydration of alkali-activated ground granulated blast furnace slag. J Mater Sci 35:249–257CrossRefGoogle Scholar
  16. 16.
    Zhou H, Wu X, Xu Z, Tang M (1993) Kinetic study on hydration of alkali-activated slag. Cem Concr Res 23(6):1253–1258CrossRefGoogle Scholar
  17. 17.
    Puertas F, Martínez-Ramírez S, Alonso S, Vázquez E (2000) Alkali-activated fly ash/slag cement. Strength behaviour and hydration products. Cem Concr Res 30:1625–1632CrossRefGoogle Scholar
  18. 18.
    Ben Haha M, Le Saout G, Winnefeld F, Lothenbach B (2011) Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem Concr Res 41(3):301–310CrossRefGoogle Scholar
  19. 19.
    Kashani A, Provis JL, Qiao GG, van Deventer JSJ (2014) The interrelationship between surface chemistry and rheology in alkali activated slag paste. Constr Build Mater 65:583–591Google Scholar
  20. 20.
    Krivenko PV (1994) Alkaline cements. In: Krivenko PV (ed) Proceedings of the first international conference on alkaline cements and concretes. VIPOL Stock Company, Kiev, pp 11–129Google Scholar
  21. 21.
    Xu H, Provis JL, van Deventer JSJ, Krivenko PV (2008) Characterization of aged slag concretes. ACI Mater J 105(2):131–139Google Scholar
  22. 22.
    Provis JL, Duxson P, Kavalerova E, Krivenko PV, Pan Z, Puertas F, van Deventer JSJ (2014) Historical aspects and overview. In: Provis JL, van Deventer JSJ (eds) Alkali-activated materials: state-of-the-art report, RILEM TC 224-AAM. Dordrecht, Springer, pp 11–57CrossRefGoogle Scholar
  23. 23.
    Provis JL, Brice DG, Buchwald A, Duxson P, Kavalerova E, Krivenko PV, Shi C, van Deventer JSJ, Wiercx JALM (2014) Demonstration projects and applications in building and civil infrastructure. In: Provis JL, van Deventer JSJ (eds) Alkali-activated materials: state-of-the-art report, RILEM TC 224-AAM. Dordrecht, Springer, pp 309–338CrossRefGoogle Scholar
  24. 24.
    Moseson AJ, Moseson DE, Barsoum MW (2012) High volume limestone alkali-activated cement developed by design of experiment. Cem Concr Compos 34(3):328–336CrossRefGoogle Scholar
  25. 25.
    Sakulich AR, Miller S, Barsoum MW (2010) Chemical and microstructural characterization of 20-month-old alkali-activated slag cements. J Am Ceram Soc 93(6):1741–1748Google Scholar
  26. 26.
    Moseson AJ. (2011) Design and implementation of alkali activated cement for sustainable development. Ph.D. Thesis, Drexel UniversityGoogle Scholar
  27. 27.
    Bai Y, Collier N, Milestone N, Yang C (2011) The potential for using slags activated with near neutral salts as immobilisation matrices for nuclear wastes containing reactive metals. J Nucl Mater 413(3):183–192CrossRefGoogle Scholar
  28. 28.
    Bakharev T, Sanjayan JG, Cheng Y-B (1999) Alkali activation of Australian slag cements. Cem Concr Res 29(1):113–120CrossRefGoogle Scholar
  29. 29.
    Fernández-Jiménez A, Puertas F (2001) Setting of alkali-activated slag cement. Influence of activator nature. Adv Cem Res 13(3):115–121CrossRefGoogle Scholar
  30. 30.
    Duran Atiş C, Bilim C, Çelik Ö, Karahan O (2009) Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr Build Mater 23(1):548–555CrossRefGoogle Scholar
  31. 31.
    Fernández-Jiménez A, Puertas F, Sobrados I, Sanz J (2003) Structure of calcium silicate hydrates formed in alkaline-activated slag: influence of the type of alkaline activator. J Am Ceram Soc 86(8):1389–1394CrossRefGoogle Scholar
  32. 32.
    Wang YX, De Carlo F, Mancini DC, McNulty I, Tieman B, Bresnahan J, Foster I, Insley J, Lane P, von Laszewski G, Kesselman C, Su MH, Thiebaux M (2001) A high-throughput x-ray microtomography system at the Advanced Photon Source. Rev Sci Instrum 72(4):2062–2068CrossRefGoogle Scholar
  33. 33.
    Provis JL, Myers RJ, White CE, Rose V, van Deventer JSJ (2012) X-ray microtomography shows pore structure and tortuosity in alkali-activated binders. Cem Concr Res 42(6):855–864CrossRefGoogle Scholar
  34. 34.
    Fernandez-Jimenez A, Puertas F, Arteaga A (1998) Determination of kinetic equations of alkaline activation of blast furnace slag by means of calorimetric data. J Thermal Anal Calorim 52(3):945–955CrossRefGoogle Scholar
  35. 35.
    Bernal SA, San Nicolas R, Myers RJ, Mejía de Gutiérrez R, Puertas F, van Deventer JSJ, Provis JL (2014) MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders. Cem Concr Res 57:33–43CrossRefGoogle Scholar
  36. 36.
    Ben Haha M, Lothenbach B, Le Saout G, Winnefeld F (2011) Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag – Part I: effect of MgO. Cem Concr Res 41(9):955–963CrossRefGoogle Scholar
  37. 37.
    Bernal SA, Provis JL, Walkley B, San Nicolas R, Gehman J, Brice DG, Kilcullen A, Duxson P, van Deventer JSJ (2013) Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem Concr Res 53:127–144CrossRefGoogle Scholar
  38. 38.
    Bernal SA, Provis JL, Brice DG, Kilcullen A, Duxson P, van Deventer JSJ (2012) Accelerated carbonation testing of alkali-activated binders significantly underestimate the real service life: the role of the pore solution. Cem Concr Res 42(10):1317–1326CrossRefGoogle Scholar
  39. 39.
    Sun GK, Young JF, Kirkpatrick RJ (2006) The role of Al in C-S-H: NMR, XRD, and compositional results for precipitated samples. Cem Concr Res 36(1):18–29Google Scholar
  40. 40.
    Bernal SA, San Nicolas R, Provis JL, Mejía de Gutiérrez R, van Deventer JSJ (2014) Natural carbonation of aged alkali-activated slag concretes. Mater Struct 47(4):693–707Google Scholar
  41. 41.
    Escalante-Garcia J, Fuentes AF, Gorokhovsky A, Fraire-Luna PE, Mendoza-Suarez G (2003) Hydration products and reactivity of blast-furnace slag activated by various alkalis. J Am Ceram Soc 86(12):2148–2153CrossRefGoogle Scholar
  42. 42.
    Bernal SA, Provis JL, Mejía de Gutiérrez R, van Deventer JSJ (2014) Accelerated carbonation testing of alkali-activated slag/metakaolin blended concretes: effect of exposure conditions. Mater Struct. doi: 10.1617/s11527-014-0289-4
  43. 43.
    Le Saoût G, Ben Haha M, Winnefeld F, Lothenbach B (2011) Hydration degree of alkali-activated slags: A 29Si NMR study. J Am Ceram Soc 94(12):4541–4547CrossRefGoogle Scholar
  44. 44.
    Benharrats N, Belbachir M, Legrand AP, d’Espinose de la Caillerie J-B (2003) 29Si and 27Al MAS NMR study of the zeolitization of kaolin by alkali leaching. Clay Miner 38(1):49–61Google Scholar
  45. 45.
    Ward RL, McKague HL (1994) Clinoptilolite and heulandite structural differences as revealed by multinuclear nuclear magnetic resonance spectroscopy. J Phys Chem 98(4):1232–1237CrossRefGoogle Scholar
  46. 46.
    Richardson IG, Brough AR, Brydson R, Groves GW, Dobson CM (1993) Location of aluminum in substituted calcium silicate hydrate (C-S-H) gels as determined by 29Si and 27Al NMR and EELS. J Am Ceram Soc 76(9):2285–2288CrossRefGoogle Scholar
  47. 47.
    Andersen MD, Jakobsen HJ, Skibsted J (2003) Incorporation of aluminum in the calcium silicate hydrate (C–S–H) of hydrated Portland cements: A high-field 27Al and 29Si MAS NMR investigation. Inorg Chem 42(7):2280–2287Google Scholar
  48. 48.
    Ben Haha M, Lothenbach B, Le Saout G, Winnefeld F (2012) Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag – Part II: effect of Al2O3. Cem Concr Res 42(1):74–83CrossRefGoogle Scholar
  49. 49.
    Myers RJ, Bernal SA, San Nicolas R, Provis JL (2013) Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the crosslinked substituted tobermorite model. Langmuir 29(17):5294–5306CrossRefGoogle Scholar
  50. 50.
    Engelhardt G, Michel D (1987) High-Resolution Solid-State NMR of Silicates and Zeolites. John Wiley & Sons, ChichesterGoogle Scholar
  51. 51.
    Valentini L, Dalconi MC, Parisatto M, Cruciani G, Artioli G (2011) Towards three-dimensional quantitative reconstruction of cement microstructure by X-ray diffraction microtomography. J Appl Cryst 44:272–280CrossRefGoogle Scholar
  52. 52.
    Sugiyama T, Promentilla MAB, Hitomi T, Takeda N (2010) Application of synchrotron microtomography for pore structure characterization of deteriorated cementitious materials due to leaching. Cem Concr Res 40(8):1265–1270CrossRefGoogle Scholar

Copyright information

© RILEM 2014

Authors and Affiliations

  • Susan A. Bernal
    • 1
  • John L. Provis
    • 1
  • Rupert J. Myers
    • 1
  • Rackel San Nicolas
    • 2
  • Jannie S. J. van Deventer
    • 2
    • 3
  1. 1.Department of Materials Science and EngineeringThe University of SheffieldSheffieldUK
  2. 2.Department of Chemical & Biomolecular EngineeringThe University of MelbourneParkvilleAustralia
  3. 3.Zeobond Pty LtdDocklandsAustralia

Personalised recommendations