Skip to main content
Log in

The influence of reinforcement steel surface condition on initiation of chloride induced corrosion

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript


This paper describes a part of the work in the development of a “standard” test method for determining chloride threshold values required to initiate corrosion on reinforcement in concrete. The prerequisites of the test set-up are that the test conditions should be reasonably comparable to those in service and the test method should be fairly reproducible and as rapid as possible concerning the slow diffusion nature of the investigated phenomenon. This paper presents the results from a study on the influence of steel bar surface condition on chloride induced corrosion. Various electrochemical techniques were employed in the study to monitor the corrosion behaviour of the embedded bars with three different surface conditions. It is shown that the steel surface condition has a strong effect on the corrosion initiation of reinforcement in concrete, and can likely be the most decisive parameter attributing to the variability in the reported chloride threshold values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others


  1. Alonso C, Castellote M, Andrade C (2002) Chloride threshold dependence of pitting potential of reinforcements. Electrochim Acta 47(21):3469–3481

    Article  Google Scholar 

  2. Alonso MC, Sanchez M (2009) Analysis of the variability of chloride threshold values in the literature. Mater Corros 60(8):631–637. doi:10.1002/maco.200905296

    Article  MathSciNet  Google Scholar 

  3. American Association of State Highway and Transportation Officials (1997) AASHTO-T260 Standard method of test for sampling and testing for chloride ion in concrte and concrete raw materials

  4. Andrade C, Alonso C, Gulikers J, Polder R, Cigna R, Vennesland Ø, Salta M, Raharinaivo A, Elsener B (2004) Test methods for on-site corrosion rate measurements of steel reinforcement in concrete by means of the polarization resistance method. Mater Struct 37(9):623–643. doi:10.1007/BF02483292

    Article  MATH  Google Scholar 

  5. Angst U, Elsener B, Larsen CK, Vennesland Ø (2009) Critical chloride content in reinforced concrete—a review. Cem Concr Res 39(12):1122–1138. doi:10.1016/j.cemconres.2009.08.006

    Article  Google Scholar 

  6. Angst UM, Elsener B, Larsen CK, Vennesland Ø (2011) Chloride induced reinforcement corrosion: electrochemical monitoring of initiation stage and chloride threshold values. Corros Sci 53(4):1451–1464. doi:10.1016/j.corsci.2011.01.025

    Article  Google Scholar 

  7. Arup H (1983) The mechanisms of protection of steel by concrete. In: Crane AP (ed) Corrosion of reinforcement in concrete structures. Ellis Norwood Ltd, Chichester, pp 151–157

    Google Scholar 

  8. Arup H, Sørensen HE (1995) A proposed technique for determining chloride thresholds. In: Nilsson L-O, Ollivier JP (eds) Chloride penetration in concrete. International RILEM workshop, St-Rémy-lès-Chevreuse, pp 460–469

    Google Scholar 

  9. Benture A, Diamond S, Berke NS (1997) Steel corrosion in concrete—Fundamentals and civil engineering practice. Taylor & Francis, London

    Google Scholar 

  10. Bertolini L, Elsener B, Pedeferri P, Polder R (2004) Corrosion of steel in concrete—prevention, diagnosis, repair. Wiley, Weinheim

    Google Scholar 

  11. Elsener B, Andrade C, Gulikers J, Polder R, Raupach M (2003) Half-cell potential measurements—potential mapping on reinforced concrete structures. Mater Struct 36(7):461–471. doi:10.1007/BF02481526

    Article  Google Scholar 

  12. Ghods P, Isgor OB, McRae GA, Li J, Gu GP (2011) Microscopic investigation of mill scale and its proposed effect on the variability of chloride-induced depassivation of carbon steel rebar. Corros Sci 53(3):946–954. doi:10.1016/j.corsci.2010.11.025

    Article  MATH  Google Scholar 

  13. Glass GK, Buenfeld NR (1995) Chloride threshold levels for corrosion induced deterioration of steel in concrete. In: Nilsson L-O, Ollivier JP (eds) Chloride penetratration in concrete. International RILEM workshop, St-Rémy-lès-Chevreuse, pp 429–440

    Google Scholar 

  14. González JA, Miranda JM, Otero E, Feliu S (2007) Effect of electrochemically reactive rust layers on the corrosion of steel in a Ca(OH)2 solution. Corros Sci 49(2):436–448. doi:10.1016/j.corsci.2006.04.014

    Article  Google Scholar 

  15. Hansson CM (1984) Comments on electrochemical measurements of the corrosion of steel in concrete. Cem Concr Res 14(4):574–584. doi:10.1016/0008-8846(84)90135-2

    Article  Google Scholar 

  16. Hansson C, Sørensen B (1988) The threshold concentration of chloride in concrete for the initiation of reinforcement corrosion. In: Berke NS, Chake V, Whiting D (ed), Corrosion rates of steel in concrete, ASTM STP 1065, Baltimore, pp 3–16

  17. Hobbs DW (2001) Concrete deterioration: causes, diagnosis, and minimising risk. Int Mater Rev 46(3):117–144. doi:10.1179/095066001101528420

    Article  Google Scholar 

  18. Li L, Sagüés AA (2001) Chloride corrosion threshold of reinforcing steel in alkaline solutions—open-circuit immersion test. Corrosion 57(1):19–28. doi:10.5006/1.3290325

    Article  Google Scholar 

  19. Mammoliti LT, Brown LC, Hansson CM, Hope BB (1996) The influence of surface finish of reinforcing steel and ph of test solution on the chloride threshold concentration for corrosion initiation in synthetic pore solutions. Cem Concr Res 26(4):545–550. doi:10.1016/0008-8846(96)00018-X

    Article  Google Scholar 

  20. Matsushima I (2000) Localized corrosion of iron and steel. In: Revie RW (ed) Uhlig´s Corrosion Handbook, 3rd edn. Wiley, New York, pp 615–620

    Google Scholar 

  21. McCafferty E (2010) Introduction to corrosion science. Springer, New York

    Book  Google Scholar 

  22. Mohammed TU, Hamada H (2006) Corrosion of steel bars in concrete with various steel surface conditions. ACI Mater J 103(4):233–242

    Google Scholar 

  23. Nilsson L-O (2000) A numerical model for combined diffusion and convection of chloride ion in non-saturated concrete. In: Andrade C, Kropp J (eds) 2nd International RILEM Workshop on Testing and Modelling the Chloride Ingress into Concrete. RILEM Publications, Paris, pp 261–275

    Google Scholar 

  24. Novak P, Mala R, Joska L (2001) Influence of pre-rusting on steel corrosion in concrete. Cem Concr Res 31(4):589–593. doi:10.1016/S0008-8846(01)00459-8

    Article  Google Scholar 

  25. Nygaard PV (2003) Effect of steel-concrete interface defects on the chloride threshold for reinforcement corrosion. Master Thesis, Technical University of Denmark

  26. Nygaard PV, Geiker MR (2006) A method for measuring the chloride threshold value level required to initiate reinforcement corrosion in concrete. Mater Struct 38(4):489–494. doi:10.1007/BF02482145

    Article  Google Scholar 

  27. Page CL (2009) Initiation of chloride-induced corrosion of steel in concrete: role of the interfacial zone. Mater Corros 60(8):586–592. doi:10.1002/maco.200905278

    Article  Google Scholar 

  28. Page CL, Treadaway KWJ (1982) Aspects of the electrochemistry of steel in concrete. Nature 297:109–115. doi:10.1038/297109a0

    Article  Google Scholar 

  29. Rossi A, Puddu G, Elsener B (2007) The surface of iron and Fe10Cr alloys in alkaline media. In: Raupach M, Elsener B, Polder R, Mietz J (ed) Corrosion of reinforcement in concrete. EFC Publication No. 38, Woodhead Publishing, Cambridge, pp 44–61

  30. Sandberg P (1998) Chloride initiated reinforcement corrosion in marine concrete. Dissertation, Lund University

  31. Silva N (2013) Chloride induced corrosion of reinforcement steel in concrete—threshold values and ion distributions at the concrete-steel interface. Dissertation, Chalmers University of Technology

  32. Shibata T (2000) Corrosion probability and statistical evaluation of corrosion data. In: Revie RW (ed) Uhlig´s corrosion handbook, 3rd edn. Wiley, New York, pp 365–386

    Google Scholar 

  33. Tang L (2002) Mapping corrosion of steel in reinforced concrete structures. SP Report 2002:32, SP Swedish National Testing and Research Institute, Borås

  34. Tang L (2003) Estimation of cement/binder profile parallel to the determination of chloride profile in concrete. SP Report 2003:07, SP Swedish National Testing and Research Institute, Borås

  35. Tang L, Fu Y (2006) A rapid technique using a hand held instrument for mapping corrosion of steel in reinforced concrete. Restor Build Monum 12(5/6):387–400

    Google Scholar 

  36. Tang L, Utgenannt P (2009) A field study of critical chloride content in reinforced concrete with blended binder. Mater Corros 60(8):617–622. doi:10.1002/maco.200905282

    Article  Google Scholar 

  37. Treadaway KWJ, Cox RN, Brown BL (1989) Durability of corrosion resisting steels in concrete. ICE Proc 86(2):305–331. doi:10.1680/iicep.1989.1628

    Article  Google Scholar 

  38. Tuutti K (1982) Corrosion of steel in concrete. Dissertation, Swedish Cement and Concrete Research Institute

  39. Yonezawa T, Ashworth V, Procter RPM (1988) Pore solution composition and chloride effect on the corrosion of steel in concrete. Corrosion 44(7):489–499. doi:10.5006/1.3583967

    Article  Google Scholar 

Download references


The authors are grateful for the financial support from the Swedish Consortium for Financing Basic Research in the Field of Concrete.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Dimitrios Boubitsas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boubitsas, D., Tang, L. The influence of reinforcement steel surface condition on initiation of chloride induced corrosion. Mater Struct 48, 2641–2658 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: