Advertisement

Materials and Structures

, Volume 48, Issue 8, pp 2641–2658 | Cite as

The influence of reinforcement steel surface condition on initiation of chloride induced corrosion

  • Dimitrios Boubitsas
  • Luping Tang
Original Article

Abstract

This paper describes a part of the work in the development of a “standard” test method for determining chloride threshold values required to initiate corrosion on reinforcement in concrete. The prerequisites of the test set-up are that the test conditions should be reasonably comparable to those in service and the test method should be fairly reproducible and as rapid as possible concerning the slow diffusion nature of the investigated phenomenon. This paper presents the results from a study on the influence of steel bar surface condition on chloride induced corrosion. Various electrochemical techniques were employed in the study to monitor the corrosion behaviour of the embedded bars with three different surface conditions. It is shown that the steel surface condition has a strong effect on the corrosion initiation of reinforcement in concrete, and can likely be the most decisive parameter attributing to the variability in the reported chloride threshold values.

Keywords

Chloride-induced corrosion Chloride threshold values Reinforcement steel surface condition Concrete 

Notes

Acknowledgments

The authors are grateful for the financial support from the Swedish Consortium for Financing Basic Research in the Field of Concrete.

References

  1. 1.
    Alonso C, Castellote M, Andrade C (2002) Chloride threshold dependence of pitting potential of reinforcements. Electrochim Acta 47(21):3469–3481CrossRefGoogle Scholar
  2. 2.
    Alonso MC, Sanchez M (2009) Analysis of the variability of chloride threshold values in the literature. Mater Corros 60(8):631–637. doi: 10.1002/maco.200905296 MathSciNetCrossRefGoogle Scholar
  3. 3.
    American Association of State Highway and Transportation Officials (1997) AASHTO-T260 Standard method of test for sampling and testing for chloride ion in concrte and concrete raw materialsGoogle Scholar
  4. 4.
    Andrade C, Alonso C, Gulikers J, Polder R, Cigna R, Vennesland Ø, Salta M, Raharinaivo A, Elsener B (2004) Test methods for on-site corrosion rate measurements of steel reinforcement in concrete by means of the polarization resistance method. Mater Struct 37(9):623–643. doi: 10.1007/BF02483292 CrossRefMATHGoogle Scholar
  5. 5.
    Angst U, Elsener B, Larsen CK, Vennesland Ø (2009) Critical chloride content in reinforced concrete—a review. Cem Concr Res 39(12):1122–1138. doi: 10.1016/j.cemconres.2009.08.006 CrossRefGoogle Scholar
  6. 6.
    Angst UM, Elsener B, Larsen CK, Vennesland Ø (2011) Chloride induced reinforcement corrosion: electrochemical monitoring of initiation stage and chloride threshold values. Corros Sci 53(4):1451–1464. doi: 10.1016/j.corsci.2011.01.025 CrossRefGoogle Scholar
  7. 7.
    Arup H (1983) The mechanisms of protection of steel by concrete. In: Crane AP (ed) Corrosion of reinforcement in concrete structures. Ellis Norwood Ltd, Chichester, pp 151–157Google Scholar
  8. 8.
    Arup H, Sørensen HE (1995) A proposed technique for determining chloride thresholds. In: Nilsson L-O, Ollivier JP (eds) Chloride penetration in concrete. International RILEM workshop, St-Rémy-lès-Chevreuse, pp 460–469Google Scholar
  9. 9.
    Benture A, Diamond S, Berke NS (1997) Steel corrosion in concrete—Fundamentals and civil engineering practice. Taylor & Francis, LondonGoogle Scholar
  10. 10.
    Bertolini L, Elsener B, Pedeferri P, Polder R (2004) Corrosion of steel in concrete—prevention, diagnosis, repair. Wiley, WeinheimGoogle Scholar
  11. 11.
    Elsener B, Andrade C, Gulikers J, Polder R, Raupach M (2003) Half-cell potential measurements—potential mapping on reinforced concrete structures. Mater Struct 36(7):461–471. doi: 10.1007/BF02481526 CrossRefGoogle Scholar
  12. 12.
    Ghods P, Isgor OB, McRae GA, Li J, Gu GP (2011) Microscopic investigation of mill scale and its proposed effect on the variability of chloride-induced depassivation of carbon steel rebar. Corros Sci 53(3):946–954. doi: 10.1016/j.corsci.2010.11.025 CrossRefMATHGoogle Scholar
  13. 13.
    Glass GK, Buenfeld NR (1995) Chloride threshold levels for corrosion induced deterioration of steel in concrete. In: Nilsson L-O, Ollivier JP (eds) Chloride penetratration in concrete. International RILEM workshop, St-Rémy-lès-Chevreuse, pp 429–440Google Scholar
  14. 14.
    González JA, Miranda JM, Otero E, Feliu S (2007) Effect of electrochemically reactive rust layers on the corrosion of steel in a Ca(OH)2 solution. Corros Sci 49(2):436–448. doi: 10.1016/j.corsci.2006.04.014 CrossRefGoogle Scholar
  15. 15.
    Hansson CM (1984) Comments on electrochemical measurements of the corrosion of steel in concrete. Cem Concr Res 14(4):574–584. doi: 10.1016/0008-8846(84)90135-2 CrossRefGoogle Scholar
  16. 16.
    Hansson C, Sørensen B (1988) The threshold concentration of chloride in concrete for the initiation of reinforcement corrosion. In: Berke NS, Chake V, Whiting D (ed), Corrosion rates of steel in concrete, ASTM STP 1065, Baltimore, pp 3–16Google Scholar
  17. 17.
    Hobbs DW (2001) Concrete deterioration: causes, diagnosis, and minimising risk. Int Mater Rev 46(3):117–144. doi: 10.1179/095066001101528420 CrossRefGoogle Scholar
  18. 18.
    Li L, Sagüés AA (2001) Chloride corrosion threshold of reinforcing steel in alkaline solutions—open-circuit immersion test. Corrosion 57(1):19–28. doi: 10.5006/1.3290325 CrossRefGoogle Scholar
  19. 19.
    Mammoliti LT, Brown LC, Hansson CM, Hope BB (1996) The influence of surface finish of reinforcing steel and ph of test solution on the chloride threshold concentration for corrosion initiation in synthetic pore solutions. Cem Concr Res 26(4):545–550. doi: 10.1016/0008-8846(96)00018-X CrossRefGoogle Scholar
  20. 20.
    Matsushima I (2000) Localized corrosion of iron and steel. In: Revie RW (ed) Uhlig´s Corrosion Handbook, 3rd edn. Wiley, New York, pp 615–620Google Scholar
  21. 21.
    McCafferty E (2010) Introduction to corrosion science. Springer, New YorkCrossRefGoogle Scholar
  22. 22.
    Mohammed TU, Hamada H (2006) Corrosion of steel bars in concrete with various steel surface conditions. ACI Mater J 103(4):233–242Google Scholar
  23. 23.
    Nilsson L-O (2000) A numerical model for combined diffusion and convection of chloride ion in non-saturated concrete. In: Andrade C, Kropp J (eds) 2nd International RILEM Workshop on Testing and Modelling the Chloride Ingress into Concrete. RILEM Publications, Paris, pp 261–275Google Scholar
  24. 24.
    Novak P, Mala R, Joska L (2001) Influence of pre-rusting on steel corrosion in concrete. Cem Concr Res 31(4):589–593. doi: 10.1016/S0008-8846(01)00459-8 CrossRefGoogle Scholar
  25. 25.
    Nygaard PV (2003) Effect of steel-concrete interface defects on the chloride threshold for reinforcement corrosion. Master Thesis, Technical University of DenmarkGoogle Scholar
  26. 26.
    Nygaard PV, Geiker MR (2006) A method for measuring the chloride threshold value level required to initiate reinforcement corrosion in concrete. Mater Struct 38(4):489–494. doi: 10.1007/BF02482145 CrossRefGoogle Scholar
  27. 27.
    Page CL (2009) Initiation of chloride-induced corrosion of steel in concrete: role of the interfacial zone. Mater Corros 60(8):586–592. doi: 10.1002/maco.200905278 CrossRefGoogle Scholar
  28. 28.
    Page CL, Treadaway KWJ (1982) Aspects of the electrochemistry of steel in concrete. Nature 297:109–115. doi: 10.1038/297109a0 CrossRefGoogle Scholar
  29. 29.
    Rossi A, Puddu G, Elsener B (2007) The surface of iron and Fe10Cr alloys in alkaline media. In: Raupach M, Elsener B, Polder R, Mietz J (ed) Corrosion of reinforcement in concrete. EFC Publication No. 38, Woodhead Publishing, Cambridge, pp 44–61Google Scholar
  30. 30.
    Sandberg P (1998) Chloride initiated reinforcement corrosion in marine concrete. Dissertation, Lund UniversityGoogle Scholar
  31. 31.
    Silva N (2013) Chloride induced corrosion of reinforcement steel in concrete—threshold values and ion distributions at the concrete-steel interface. Dissertation, Chalmers University of TechnologyGoogle Scholar
  32. 32.
    Shibata T (2000) Corrosion probability and statistical evaluation of corrosion data. In: Revie RW (ed) Uhlig´s corrosion handbook, 3rd edn. Wiley, New York, pp 365–386Google Scholar
  33. 33.
    Tang L (2002) Mapping corrosion of steel in reinforced concrete structures. SP Report 2002:32, SP Swedish National Testing and Research Institute, BoråsGoogle Scholar
  34. 34.
    Tang L (2003) Estimation of cement/binder profile parallel to the determination of chloride profile in concrete. SP Report 2003:07, SP Swedish National Testing and Research Institute, BoråsGoogle Scholar
  35. 35.
    Tang L, Fu Y (2006) A rapid technique using a hand held instrument for mapping corrosion of steel in reinforced concrete. Restor Build Monum 12(5/6):387–400Google Scholar
  36. 36.
    Tang L, Utgenannt P (2009) A field study of critical chloride content in reinforced concrete with blended binder. Mater Corros 60(8):617–622. doi: 10.1002/maco.200905282 CrossRefGoogle Scholar
  37. 37.
    Treadaway KWJ, Cox RN, Brown BL (1989) Durability of corrosion resisting steels in concrete. ICE Proc 86(2):305–331. doi: 10.1680/iicep.1989.1628 CrossRefGoogle Scholar
  38. 38.
    Tuutti K (1982) Corrosion of steel in concrete. Dissertation, Swedish Cement and Concrete Research InstituteGoogle Scholar
  39. 39.
    Yonezawa T, Ashworth V, Procter RPM (1988) Pore solution composition and chloride effect on the corrosion of steel in concrete. Corrosion 44(7):489–499. doi: 10.5006/1.3583967 CrossRefGoogle Scholar

Copyright information

© RILEM 2014

Authors and Affiliations

  1. 1.CBI Swedish Cement and Concrete Research InstituteBoråsSweden
  2. 2.Division of Building MaterialsLund Institute of TechnologyLundSweden
  3. 3.Department of Civil and Environmental EngineeringChalmers University of TechnologyGöteborgSweden

Personalised recommendations