Materials and Structures

, Volume 48, Issue 4, pp 1135–1147 | Cite as

Water susceptibility of asphalt mixtures as influenced by hydraulically active fillers

Original Article

Abstract

Water affects asphalt pavements in a detrimental way and it is common knowledge that certain combinations of binder and aggregate can trigger premature failures. Asphalt manufacturing relies mainly on experience and continuous empirical testing. To reduce water sensitivity, adhesion promoters are frequently used. In this investigation, focus was on using portland cement and a by-product from cement manufacturing, cement kiln dust (CKD). The hypothesis was that water susceptibility is influenced by the grading of the hydraulically active fillers: a finer grading will give a stronger improvement. The experimental plan comprised, besides a reference material, 3 different cements and 2 CKDs. Water susceptibility was assessed with the tumbler abrasion test using mastic specimens. Potentially negative effects: decreased workability and degraded low temperature properties were investigated by measuring viscosity of filler/bitumen mixes and low temperature cracking properties, respectively. Admixing of hydraulic filler was made by partly replacing the base material filler with hydraulic filler, thus keeping the overall filler content unchanged. Results show that resistance to moisture damage is improved by adding hydraulically active fillers. However, the hypothesis of finer gradings giving stronger response was not supported; all three portland cements gave very similar results. Furthermore, it seems that fractions of added hydraulic filler above 1–1.5 % (mass of total aggregate) do not further increase abrasion resistance. Essentially, no potential drawbacks, decreased workability or increased low temperature cracking, were noted.

Keywords

Asphalt Water susceptibility Portland cement Cement kiln dust Tumbler abrasion TSRST 

Notes

Acknowledgments

This Project was a cooperative effort between NCC Roads AB and Cementa AB. The main part of funding was provided by SBUF The Development Fund of the Swedish Construction Industry and MinBaS (a common platform for the minerals, aggregates and stone industry in Sweden).

References

  1. 1.
    AASHTO Designation TP10 (1993) Standard test method for thermal stress restrained specimen tensile strength. American Association of State Highway and Transportation OfficialsGoogle Scholar
  2. 2.
    Airey GD, Collop AC, Zoorob SE, Elliott RC (2007) The influence of aggregate, filler and bitumen on asphalt mixture moisture damage. Constr Build Mater 22(11):2015–2024Google Scholar
  3. 3.
    Bagampadde U, Isacsson U, Kiggundu BM (2004) Classical and contemporary aspects of stripping in bituminous mixes—state of the art. Road Mater Pavement 5(1):7–43CrossRefGoogle Scholar
  4. 4.
    Baghdadi ZA, Fatani MN, Sabban NA (1995) Soil modification by cement kiln dust. J Mater Civil Eng 7(4):218–222CrossRefGoogle Scholar
  5. 5.
    Bayomy FM (1992) Development and analysis of cement-coated aggregates for asphalt mixtures. In: Meininger RC (ed) Effects of aggregates and mineral fillers on asphalt mixture performance. ASTM STP 1147, p 19–34Google Scholar
  6. 6.
    Birgisson B, Roque R, Page GC (2004) Performance-based fracture criterion for evaluation of moisture susceptibility in hot-mix asphalt. Transp Res Rec 1891:55–61CrossRefGoogle Scholar
  7. 7.
    Caro S, Masad E, Bhasin A, Little DN (2008) Moisture susceptibility of asphalt mixtures, part 1: mechanisms. I J Pavement Eng 9(2):81–98CrossRefGoogle Scholar
  8. 8.
    Caro S, Masad E, Bhasin A, Little DN (2008) Moisture susceptibility of asphalt mixtures, part 2: characterisation and modelling. I J Pavement Eng 9(2):99–114CrossRefGoogle Scholar
  9. 9.
    Chen X, Huang B (2008) Evaluation of moisture damage in hot mix asphalt using simple performance and superpave indirect tensile tests. Constr Build Mater 22:1950–1962CrossRefGoogle Scholar
  10. 10.
    Chen J-S, Kuo P-H, Lin P-S, Huang C-C, Lin K-Y (2008) Experimental and theoretical characterization of the engineering behavior of bitumen mixed with mineral filler. Mater Struct 41:1015–1024CrossRefGoogle Scholar
  11. 11.
    Collins RJ, Emery JJ (1983) Kiln dust-fly ash systems for highway bases and subbases. FHWA/RD-82/167. Federal Highway AdministrationGoogle Scholar
  12. 12.
    EPA (1993) Report to Congress (1993)—cement kiln dust waste. US EPA530-R-94-001. US Environmental Protection AgencyGoogle Scholar
  13. 13.
    Epps JA, Sebaaly PE, Penaranda J, Maher MR, McCann MB, Hand AJ (2000) Compatibility of a test for moisture-induced damage with superpave volumetric mix design. National Cooperative Highway Research Program Report 444. National Academy PressGoogle Scholar
  14. 14.
    Grabowski W, Wilanowicz J (2008) The stucture of mineral fillers and their stiffening properties in filler–bitumen mastics. Mater Struct 41:793–804CrossRefGoogle Scholar
  15. 15.
    Guirguis HR, Daoud OEK, Hamdani SK (1982) Asphalt concrete mixtures made with cement-coated aggregates. Transport Res Rec 843:80–85Google Scholar
  16. 16.
    Hallberg S (1953) Vidhäftningen mellan bituminösa bindemedel och stenmaterial och dess betydelse för vägbeläggningar. Statens Väginstitut Rapport 25. Statens Väginstitut, StockholmGoogle Scholar
  17. 17.
    Horak E, Mukandila EM (2008) Exploratory use of Rigden voids as design criteria for the design of sand treated with emulsion. Road Mater Pavement 9(3):525–535CrossRefGoogle Scholar
  18. 18.
    Isacsson U (1990) Portlandcement som vidhäftningsbefrämjande medel i asfaltgrus. Tekniska Högskolan i Luleå, avd för Gatuteknik, Rapport 2 1990Google Scholar
  19. 19.
    Jacobson T (2003) Stabilisering med emulsion och kombinationen av emulsion + cement. VTI Notat 59. Väg- och transportforskningsinstitutetGoogle Scholar
  20. 20.
    Jansson L, Malmqvist E (2003) Tillsatsmedel och bindemedels inverkan på lågtemperaturegenskaper hos en beläggning. SBUF Rapport 11057. Svenska Byggbranschens Utvecklings-fond (SBUF)Google Scholar
  21. 21.
    Jimenez RA (1990) Methods and treatments to control debonding. Proc Assoc Asph Paving Technol 59:93–137Google Scholar
  22. 22.
    Kringos N, Scarpas T, Kasbergen C, Selvadurai P (2008) Modelling of combined physical–mechanical moisture-induced damage in asphaltic mixes, part 1: governing processes and formulations. I J Pavement Eng 9(2):115–128CrossRefGoogle Scholar
  23. 23.
    Kringos N, Scarpas A, Copeland A, Youtcheff J (2008) Modelling of combined physical–mechanical moisture-induced damage in asphaltic mixes, part 2: moisture susceptibility parameters. I J Pavement Eng 9(2):129–151CrossRefGoogle Scholar
  24. 24.
    Malmqvist E (2006) Beständiga kalla och halvvarma beläggningar. SBUF Rapport projekt 11435. Svenska Byggbranschens Utvecklings-fond (SBUF)Google Scholar
  25. 25.
    Malmqvist E, Jansson L (2008) Beständiga beläggningar. Delrapport etapp 3. SBUF Rapport Projekt 11856. Svenska Byggbranschens Utvecklings-fond (SBUF)Google Scholar
  26. 26.
    Malmqvist E, Olsson K (2004) Långtidsuppföljning av beläggningar med Merit och cement som vidhäftningsbefrämjande medel. SBUF Rapport projekt 11390. Svenska Byggbranschens Utvecklings-fond (SBUF)Google Scholar
  27. 27.
    Niazi Y, Jalili M (2009) Effect of portland cement and lime additives on properties of cold in-place recycled mixtures with asphalt emulsion. Constr Build Mater 23:1338–1343CrossRefGoogle Scholar
  28. 28.
    Rice JM (1959) Relationship of aggregate characteristics to the effect of water on bituminous paving mixtures. Symposium of water on bituminous paving mixtures. ASTM Special Technical Publication No. 240, p 17–33Google Scholar
  29. 29.
    Richardson C (1905) The modern asphalt pavement. Wiley, New YorkGoogle Scholar
  30. 30.
    Rigden PJ (1947) The use of fillers in bituminous road surfacings. A study of filler–binder systems in relation to filler characteristics. J Soc Chem Ind 66:299–309CrossRefGoogle Scholar
  31. 31.
    Schmidt RJ (1974) Effect of temperature, freeze-thaw, and various moisture conditions on the resilient modulus of asphalt-treated mixes. Transport Res Rec 515:27–39Google Scholar
  32. 32.
    Shashidhar N, Romero P (1998) Factors affecting the stiffening potential of mineral fillers. Transport Res Rec 1638:94–100CrossRefGoogle Scholar
  33. 33.
    Si Z, Herrera CH (2007) Laboratory and field evaluation of base stabilization using cement kiln dust. Transport Res Rec 1989:42–49CrossRefGoogle Scholar
  34. 34.
    Siddique R (2006) Utilization of cement kiln dust (CKD) in cement mortar and concrete an overview. Resour Conserv Recy 48:315–338CrossRefGoogle Scholar
  35. 35.
    Taha R (2007) Evaluation of cement kiln dust-stabilized reclaimed asphalt pavement aggregate systems in road bases. Transport Res Rec 1819B:11–17Google Scholar
  36. 36.
    Taha R, Al-Rawas A, Al-Harthy A, Qatan A (2002) Use of cement bypass dust as filler in asphalt concrete mixtures. J Mater Civil Eng 14(4):338–343CrossRefGoogle Scholar
  37. 37.
    Ulmgren N, Kullander B, Åström T (2003) Finmaterialdelens betydelse för beständigheten hos asfaltbeläggningar. Jämförelse mellan Vändskakapparat och ITSR-kvot enligt FAS metod 446. SBUF Rapport Projekt 11229. Svenska Byggbranschens Utvecklings-fond (SBUF)Google Scholar

Copyright information

© RILEM 2013

Authors and Affiliations

  • Jonas Ekblad
    • 1
  • Robert Lundström
    • 1
  • Erik Simonsen
    • 2
  1. 1.NCC Roads ABUpplands VäsbySweden
  2. 2.Cementa ABSliteSweden

Personalised recommendations