Materials and Structures

, Volume 48, Issue 4, pp 1031–1041 | Cite as

Upscaling semi-adiabatic measurements for simulating temperature evolution of mass concrete structures

  • Wilson Ricardo Leal da Silva
  • Vít Šmilauer
  • Petr Štemberk
Original Article

Abstract

Thermal analysis of mass concrete is often carried out through finite element (FE) analysis. The heat release rate in a material point can be determined from a small-scale isothermal calorimeter. Nonetheless, isothermal calorimeter is generally an expensive device and lacks practicality. In that light, this paper proposes a low-cost semi-adiabatic calorimeter setup complemented with a FE analysis. Such a combination provides evolution of hydration heat under isothermal temperature and enables upscaling to the temperature evolution in mass concrete structures. The upscaling process is demonstrated on three mass concrete blocks. Initially, semi-adiabatic measurements start on 14 dm3 concrete cube to identify the heat release rate. Next, the calibrated hydration model is upscaled and validated on a 1.0 m3 concrete cube and two mass concrete foundation blocks with 511 and 1,050 m3. The validation proves successfully the upscaling approach; also, the same temperature-dependent hydration kinetics performs well from small to large scales.

Keywords

Cement hydration Mass concrete Upscaling Temperature Semi-adiabatic experiment 

Notes

Acknowledgments

We gratefully acknowledge the support of the project "Support for improving teams in research and development and the development of intersectoral mobility at Czech Technical University in Prague" OP VK CZ.1.07/2.3.00/30.0034, which allowed for funding of Dr. da Silva’s postdoctoral research.

References

  1. 1.
    ACI 207.1R-05: Guide to Mass Concrete (2005). Farmington HillsGoogle Scholar
  2. 2.
    Bamforth P (2003) Concreting large-volume (mass) pours. In Newman J, Choo BS (eds) Advanced concrete technology. Butterworth-Heinemann, Oxford, pp 1–47Google Scholar
  3. 3.
    Bentz D (2000) A three-dimensional cement hydration and microstructure development modeling package. Tech. Rep. Version 3.0. NIST Building and Fire Research Laboratory, GaithersburgGoogle Scholar
  4. 4.
    Brazilian Association of Technical Standards: NBR 5736: Pozzolanic Portland Cement—Specification (1991). Rio de Janeiro, BrazilGoogle Scholar
  5. 5.
    Brazilian Association of Technical Standards: NBR 7219: aggregates for concrete—determination of pulverulent materials content—test method (2000). Rio de Janeiro, BrazilGoogle Scholar
  6. 6.
    Brazilian Association of Technical Standards: NBR NM248: aggregates—sieve analysis of fine and coarse aggregates (2003). Rio de Janeiro, BrazilGoogle Scholar
  7. 7.
    Brazilian Association of Technical Standards: NBR NM53: Coarse aggregate—determination of the bulk specific gravity, apparent specific gravity, and water absorption (2003). Rio de Janeiro, BrazilGoogle Scholar
  8. 8.
    Brazilian Association of Technical Standards: NBR 7212: aggregates for concrete—specification (2005). Rio de Janeiro, BrazilGoogle Scholar
  9. 9.
    Cervera M, Oliver J, Prato T (1999) Thermo-chemo–mechanical model for concrete. I: hydration and aging. J Eng Mech ASCE 125(9):1018–1027. doi: 10.1061/(ASCE)0733-9399(1999)125:9(1018) CrossRefGoogle Scholar
  10. 10.
    Choktaweekarn P, Tangtermsirikul S (2010) Effect of aggregate type, casting, thickness and curing condition on restrained strain of mass concrete. Songklanakarin J Sci Technol 32(4):391–402Google Scholar
  11. 11.
    Coussy O (1995) Mechanics of porous media. Wiley, New YorkGoogle Scholar
  12. 12.
    Faria R, Azenha M, Figueiras JA (2006) Modelling of concrete at early ages: application to an externally restrained slab. Cem Concr Compos 28(6):572–585. doi: 10.1016/j.cemconcomp.2006.02.012 CrossRefGoogle Scholar
  13. 13.
    Gawin D, Pesavento F, Schrefler BA (2006) Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. part i: hydration and hygro-thermal phenomena. Int J Numer Methods Eng 67(3):299–331. doi: 10.1002/nme.1615 Google Scholar
  14. 14.
    Gawin D, Pesavento F, Schrefler BA (2006) Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. part ii: shrinkage and creep of concrete. Int J Numer Methods Eng 67(3):332–363. doi: 10.1002/nme.1636 Google Scholar
  15. 15.
    Guo L, Guo L, Zhong L, Zhu Y (2011) Thermal conductivity and heat transfer coefficient of concrete. J Wuhan Univ Technol Mater Sci Ed 26(4):791–796. doi: 10.1007/s11595-011-0312-3 Google Scholar
  16. 16.
    Hellmich C, Mang HA, Ulm FJ (2001) Hybrid method for quantification of stress states in shotcrete tunnel shells: combination of 3D in situ displacement measurements and thermochemoplastic material law. Comput Struct 79(22–25):2103–2115. doi: 10.1016/S0045-7949(01)00057-8 CrossRefGoogle Scholar
  17. 17.
    Hughes TJR (2000) The Finite element method: linear static and dynamic finite element analysis. Dover Publications, MineolaGoogle Scholar
  18. 18.
    Jendele L, Šmilauer V, Červenka J (2013) Multiscale hydro-thermo-mechanical model for early-age and mature concrete structures. Adv Eng Softw. doi: 10.1016/j.advengsoft.2013.05.002
  19. 19.
    Kim KH, Jeon SE, Kim JK, Yang S (2003) An experimental study on thermal conductivity of concrete. Cem Concr Res 33(3):363–371. doi: 10.1016/S0008-8846(02)00965-1 CrossRefGoogle Scholar
  20. 20.
    Kosmatka S, Kerkhoff B, Panarese W (2003) Design and control of concrete mixtures, 14th edn. Portland Cement Association, SkokieGoogle Scholar
  21. 21.
    Mehta P, Monteiro P (2005) Concrete: microstructure, properties, and materials. McGraw-Hill, New YorkGoogle Scholar
  22. 22.
    Nawy E (2008) Concrete Construction engineering handbook, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  23. 23.
    Neville AM (1997) Properties of concrete, 4th edn. Wiley, LondonGoogle Scholar
  24. 24.
    NRMCA (2007) Concrete in practice. National Ready Mixed Concrete Association, Silver SpringGoogle Scholar
  25. 25.
    Patzák B, Rypl D (2012) Object-oriented, parallel finite element framework with dynamic load balancing. Adv Eng Softw 47(1):35–50. doi: 10.1016/j.advengsoft.2011.12.008 CrossRefGoogle Scholar
  26. 26.
    Ulm FJ, Coussy O (1998) Couplings in early-age concrete: from material modeling to structural design. Int J Solids Struct 35(31–32):4295–4311. doi: 10.1016/S0020-7683(97)00317-X CrossRefMATHGoogle Scholar
  27. 27.
    Šmilauer V (2013) Multiscale hierarchical modeling of hydrating concrete. Saxe-Coburg Publications, StirlingGoogle Scholar
  28. 28.
    Štemberk P, Rainová A (2011) Simulation of hydration and cracking propagation with temperature effect based on fuzzy logic theory. Mechanika 17(4):358–362. doi: 10.5755/j01.mech.17.4.561 Google Scholar
  29. 29.
    Weiss W, Yang W, Shah S (1999) Factors influencing durability and early-age cracking in high strength concrete structures. In: High performance concrete: research to practice, SP 189-22. American Concrete Institute, Farmington Hills, pp 387–409Google Scholar

Copyright information

© RILEM 2013

Authors and Affiliations

  • Wilson Ricardo Leal da Silva
    • 1
  • Vít Šmilauer
    • 1
  • Petr Štemberk
    • 2
  1. 1.Department of Mechanics, Faculty of Civil EngineeringCzech Technical University in PragueThákurova, 7Czech Republic
  2. 2.Department of Concrete and Masonry Structures, Faculty of Civil EngineeringCzech Technical University in PragueThákurova, 7Czech Republic

Personalised recommendations