Materials and Structures

, Volume 48, Issue 1–2, pp 67–75 | Cite as

The physico-mechanical stability of C–S–H/polyaniline nanocomposites

  • Rahil Khoshnazar
  • Rouhollah Alizadeh
  • James J. Beaudoin
  • Laila Raki
Original Article


The formation and characterization of various types of organically modified CSH-based nanocomposites have recently been investigated. The engineering properties of this class of cementitious materials, however, have rarely been studied. The current work examines a new approach to the assessment of the mechanical performance of CSH/polyaniline nanocomposites prepared in situ using CSH systems having C/S ratios of 0.8 and 1.2. Test methods including X-ray diffraction and dynamic mechanical analysis were employed in order to evaluate the physical and mechanical stability of these polymer-modified CSH nanocomposites. The variations in the 002 basal spacing, storage modulus (E′) and internal friction (tan δ) of the CSH/polyaniline nanocomposites were examined upon the incremental removal of the interlayer water. It was suggested that the polyaniline molecules may reinforce the CSH lamellar structure as indicated by the magnitude of the decrease in the 002 basal-spacing during the dehydration. Moreover, the initial DMA response of the CSH/polyaniline nanocomposites appears to be improved.


Calcium–silicate–hydrate Nanocomposite In situ polymerization Dynamic mechanical analysis 


  1. 1.
    Raki L, Beaudoin JJ, Alizadeh R, Makar JM, Sato T (2010) Cement and concrete nanoscience and nanotechnology. Materials 3:918–942CrossRefGoogle Scholar
  2. 2.
    Balaguru P, Chong K (2006) Nanotechnology and concrete: research opportunities. ACI SP-254: nanotechnology of concrete: recent developments and future perspectives. American Concrete Institute, Detroit, pp 15-28Google Scholar
  3. 3.
    Minet J, Abramson S, Bresson B, Sanchez C, Montouillout V, Lequeux N (2004) New layered calcium organosilicate hybrids with covalently linked organic functionalities. Chem Mater 16:3955–3962CrossRefGoogle Scholar
  4. 4.
    Pellenq RJ-M, Lequeux N, Van Damme H (2008) Engineering the bonding scheme in C-S–H: the iono-covalent framework. Cem Concr Res 38:159–174CrossRefGoogle Scholar
  5. 5.
    Beaudoin JJ, Raki L, Alizadeh R (2009) A 29Si MAS NMR study of the calcium silicate hydrate nanocomposites. Cem Concr Compos 31:585–590CrossRefGoogle Scholar
  6. 6.
    Beaudoin JJ, Drame H, Raki L, Alizadeh R (2008) Formation and characterization of calcium silicate hydrate-hexadecyltrimethylammonium nanostructure. J Mater Res 23:2804–2815CrossRefGoogle Scholar
  7. 7.
    Beaudoin JJ, Drame H, Raki L, Alizadeh R (2009) Formation and properties of C–S–H—PEG nano-structures. Mater Struct 42:1003–1014CrossRefGoogle Scholar
  8. 8.
    Matsuyama H, Young JF (1999) Intercalation of polymers in calcium silicate hydrate: a new synthetic approach to biocomposites? Chem Mater 11:16–19CrossRefGoogle Scholar
  9. 9.
    Matsuyama H, Young JF (1999) Synthesis of calcium silicate hydrate/polymer complexes: part I. J Mater Res 14:3379–3388CrossRefGoogle Scholar
  10. 10.
    Matsuyama H, Young JF (1999) Synthesis of calcium silicate hydrate/polymer complexes: part II. J Mater Res 14:3389–3396CrossRefGoogle Scholar
  11. 11.
    Mojumdar SC, Raki L (2005) Preparation and properties of calcium silicate hydrate-poly(vinyl alcohol) nanocomposites materials. J Therm Anal Calorim 82:89–95CrossRefGoogle Scholar
  12. 12.
    Mojumdar SC, Raki L (2006) Preparation, thermal. spectral and microscopic studies of calcium silicate hydrate-poly(acrylic acid) nanocomposites materials. J Therm Anal Calorim 85:99–105CrossRefGoogle Scholar
  13. 13.
    Minet J, Abramson S, Bresson B, Franceschini A, Van Damme H, Lequeux N (2006) Organic calcium silicate hydrate hybrids: a new approach to cement based nanocomposites. J Mater Chem 16:1379–1383CrossRefGoogle Scholar
  14. 14.
    Franceschini A, Abramson S, Mancini V, Bresson B, Chassenieux C, Lequeux N (2007) New covalent bonded polymer-calcium silicate hydrate composites. J Mater Chem 17:913–922CrossRefGoogle Scholar
  15. 15.
    Beaudoin JJ, Patarachao B, Raki L, Alizadeh R (2009) The Interaction of methylene blue dye with calcium–silicate–hydrate. J Am Ceram Soc 92:204–208CrossRefGoogle Scholar
  16. 16.
    Pelisser F, Gleiz PJP, Mikowski A (2010) Effect of poly(diallyldimethylammonium chloride) on nanostructure and mechanical properties of calcium silicate hydrate”. Mater Sci Eng A 527(26):1045–1049CrossRefGoogle Scholar
  17. 17.
    Alizadeh R (2009) Nanostructure and engineering properties of basic and modified calciumsilicatehydrate systems. PhD thesis, University of OttawaGoogle Scholar
  18. 18.
    Khoshnazar R, Beaudoin JJ, Raki L, Alizadeh R (2012) Volume stability of CSH/polyaniline in aqueous solutions. ACI Mater J, under reviewGoogle Scholar
  19. 19.
    Taylor HFW (1997) Cement chemistry, 2nd edn. Thomas Telford Publication, LondonCrossRefGoogle Scholar
  20. 20.
    Taylor HFW (1986) Proposed structure for calcium silicate hydrate gel. J Am Ceram Soc 69:464–467CrossRefGoogle Scholar
  21. 21.
    Alizadeh R, Beaudoin JJ (2011) Mechanical properties of calcium silicate hydrates. Mater Struct 44:13–28CrossRefGoogle Scholar
  22. 22.
    Beaudoin JJ (1983) Comparison of mechanical properties of compacted calcium hydroxide and Portland cement paste systems. Cem Concr Res 13:319–324CrossRefGoogle Scholar
  23. 23.
    Soroka I, Sereda PJ (1968) The structure of cement-stone and the use of compacts as structural models. In: Proceedings of the 5th international symposium on the chemistry of cement, Tokyo, pp 67–73Google Scholar
  24. 24.
    Alizadeh R, Beaudoin JJ, Raki L, Terskikh V (2011) C–S–H/polyaniline nanocomposites prepared by in situ polymerization. J Mater Sci 46:460–467CrossRefGoogle Scholar
  25. 25.
    Rodrigues PC, Akcelrud L (2003) Networks and blends of polyaniline and polyurethane: correlations between composition and thermal, dynamic mechanical and electrical properties. Polymer 44:6891–6899CrossRefGoogle Scholar
  26. 26.
    Lesueur D, Colin X, Camino G, Alberola ND (1997) Dynamic mechanical behaviour and thermal degradation of undoped polyaniline. Polym Bull 39:755–760CrossRefGoogle Scholar
  27. 27.
    Chen S, Lee H (1995) Structure and properties of poly(acry1ic acid)-doped polyaniline. Macromolecules 28:2858–2866CrossRefGoogle Scholar
  28. 28.
    Radjy F, Richards CW (1973) Effect of curing and heat treatment history on the dynamic mechanical response and the pore structure of hardened cement paste. Cem Concr Res 3:7–21CrossRefGoogle Scholar
  29. 29.
    Sellevold EJ, Radjy F (1976) Drying and resaturation effects on internal friction in hardened cement pastes. J Am Ceram Soc 59:256–258CrossRefGoogle Scholar
  30. 30.
    Radjy F, Richards CW (1969) Internal friction and dynamic modulus transitions in hardened cement paste at low temperatures. Mater Struct 2:17–22Google Scholar
  31. 31.
    Radjy F, Ricahrds CW (1973) Effect of curing and heat treatment history on the dynamic mechanical response and the pore structure of hardened cement paste. Cem Concr Res 3:7–21CrossRefGoogle Scholar

Copyright information

© RILEM 2013

Authors and Affiliations

  • Rahil Khoshnazar
    • 1
  • Rouhollah Alizadeh
    • 2
  • James J. Beaudoin
    • 1
  • Laila Raki
    • 1
  1. 1.National Research Council CanadaOttawaCanada
  2. 2.Giatec Scientific Inc.OttawaCanada

Personalised recommendations