Materials and Structures

, Volume 47, Issue 4, pp 615–630 | Cite as

Simulation of fresh concrete flow using Discrete Element Method (DEM): theory and applications

  • Viktor Mechtcherine
  • Annika Gram
  • Knut Krenzer
  • Jörg-Henry Schwabe
  • Sergiy Shyshko
  • Nicolas Roussel
Original Article

Abstract

This article provides an overview of the development and the contemporary state of research in the field of simulating fresh concrete flow using the Discrete Element Method (DEM). First, this work originating from TC 222-SCF simulation of fresh concrete flow, covers the mathematical methodology, the identification of the model parameters and the link between the rheological properties of fresh concrete and the parameters of DEM-based models. Various examples of the estimation of model parameters and calibration of the model were demonstrated, followed by verifications by comparing the numerical results and the corresponding predictions by analytical formula and laboratory experiments. Furthermore, software used in concrete engineering and existing industrial applications of the developed particle models were described, showing the potential of DEM.

Keywords

Fresh concrete Rheology Numerical simulation Distinct Element Method 

References

  1. 1.
    Mechtcherine V, Shyshko S (2009) Self-compacting concrete simulation using Distinct Element Method. In: Wallevik OH, Kubens S, Oesterheld S (eds) Proceedings of the 3rd international RILEM symposium on rheology of cement suspensions such as fresh concrete, Reykjavik, 19–21 Aug 2009. RILEM Publications, Bagneux, pp 171–179Google Scholar
  2. 2.
    Roussel N, Geiker MR, Dufour F, Thrane LN, Szabo P (2007) Computational modeling of concrete flow: general overview. Cem Concr Res 37(9):1298–1307CrossRefGoogle Scholar
  3. 3.
    Kishino Y (2001) Powders and grains 2001, Proceedings of the fourth international conference on micromechanics of granular media, Sendaï, 21–25 May 2001. A.A. Balkema Publishers, LisseGoogle Scholar
  4. 4.
    Chu H, Machida A, Suzuki N (1996) Experimental investigation and DEM simulation of filling capacity of fresh concrete. Trans Jpn Concr Inst 16:9–14Google Scholar
  5. 5.
    Chu H, Machida A (1996) Numerical simulation of fluidity behaviour of fresh concrete by 2D distinct element method. Trans Jpn Concr Inst 18:1–8Google Scholar
  6. 6.
    Noor MA, Uomoto T (1999) Three-dimensional discrete element simulation of rheology tests of Self-Compacting Concrete. In: Skarendahl Å, Petersson Ö (eds) Proceedings of the 1st international RILEM symposium on self-compacting concrete, Stockholm, 13–14 Sep 1999. RILEM Publications, Cachan, pp 35–46Google Scholar
  7. 7.
    Petersson Ö, Hakami H (2001) Simulation of SCC—laboratory experiments and numerical modeling of slump flow and L-box tests. In: Ozawa K, Ouchi M (eds) Proceedings of the 2nd international symposium on self-compacting concrete, Tokyo, 23–25 Oct 2001. Coms Engineering Corporation, Tokyo, pp 79–88Google Scholar
  8. 8.
    Petersson Ö (2003) Simulation of self-compacting concrete—laboratory experiments and numerical modeling of testing methods, J-ring and L-box tests. In: Wallevik Ó, Níelsson I (eds) Proceedings of the 3rd international RILEM symposium on self-compacting concrete, Reykjavik, 17–20 Aug 2003. RILEM Publications, Bagneux, pp 202–207Google Scholar
  9. 9.
    Shyshko S, Mechtcherine V (2006) Continuous numerical modelling of concrete from fresh to hardened state. In: F. A. Finger-Institut für Baustoffkunde (ed) Tagungsbericht der 16. Internationalen Baustofftagung, ibausil, Weimar, 20–23 Sep 2006, vol 2. Bauhaus Universität, Weimar, pp 165–172Google Scholar
  10. 10.
    Mechtcherine V, Shyshko S (2007) Virtual concrete laboratory—continuous numerical simulation of concrete behaviour from fresh to hardened state. In: Grosse CU (ed) Advances in construction materials. Springer, Berlin-Heidelberg, pp 479–488Google Scholar
  11. 11.
    Mechtcherine V, Shyshko S (2007) Simulating the behaviour of fresh concrete using Distinct Element Method. In: De Schutter G, Boel V (eds) Proceedings of the 5th international RILEM symposium on self-compacting concrete—SCC 2007, Ghent, 3–5 Sep 2007. RILEM Publications, Bagneux, pp 467–472Google Scholar
  12. 12.
    Kuch H, Palzer S, Schwabe J-H (2006) Anwendung der Simulation bei der Verarbeitung von Gemengen. In: F. A. Finger-Institut für Baustoffkunde (ed) Tagungsbericht der 16. Internationalen Baustofftagung, ibausil, Weimar, Germany, 20-23 September 2006, vol 1. Bauhaus Universität, Weimar, pp 1321–1327Google Scholar
  13. 13.
    Schwabe J-H, Kuch H (2005) Development and control of concrete mix processing procedures. In: Borghoff M, Gottschalg A, Mehl R (eds) Proceedings of the 18th BIBM international congress and exhibition, Amsterdam, 11–14 May 2005. Bond van Fabrikanten van Betonproducten in Nederland, Woerden, pp 108–109Google Scholar
  14. 14.
    Konietzky H (ed) (2002) Numerical modelling in micromechanics via particle methods. In: Proceedings of the 1st international PFC symposium, Gelsenkirchen, 6–8 Nov 2002. A. A. Balkema Publishers, LisseGoogle Scholar
  15. 15.
    Cundall PA, Konietzky H, Potyondy DO (1996) PFC—Ein Neues Werkzeug für Numerische Modellierungen. Bautechnik 73(8):492–498Google Scholar
  16. 16.
    Itasca Consulting Group Inc. (2002) PFC 2D, version 3.0. ICG, MinneapolisGoogle Scholar
  17. 17.
    Malkin AY, Isayev AI (2006) Rheology—concepts, methods and applications. ChemTec Publishing, TorontoGoogle Scholar
  18. 18.
    Macosko CW (1994) Rheology principles, measurements and applications. Wiley-VCH, New YorkGoogle Scholar
  19. 19.
    Roussel N (2006) Correlation between yield stress and slump: comparison between numerical simulations and concrete rheometers results. Mater Struct 39:501–509CrossRefGoogle Scholar
  20. 20.
    Shyshko S, Mechtcherine V (2008) Simulating the workability of fresh concrete. In: Schlangen E, De Schutter G (eds) Proceedings of the international RILEM symposium of concrete modelling—CONMOD’08, Delft, 26–28 May 2008. RILEM Publications, Bagneux, pp 173–181Google Scholar
  21. 21.
    Krenzer K, Schwabe J-H (2009) Calibration of parameters for particle simulation of building materials, using stochastic optimization procedures. In: Wallevik OH, Kubens S, Oesterheld S (eds) Proceedings of the 3rd international RILEM symposium on rheology of cement suspensions such as fresh concrete, Reykjavik, 19–21 Aug 2009. RILEM Publications, BagneuxGoogle Scholar
  22. 22.
    Shyshko S, Mechtcherine V (2010) Simulating fresh concrete behaviour—establishing a link between the Bingham model and parameters of a DEM-based numerical model. In: HetMat—modelling of heterogenous materials, Brameshuber W (eds) RILEM Proceedings PRO 76. RILEM Publications SARL, Bagneux, pp 211–219Google Scholar
  23. 23.
    Roussel N, Coussot P (2005) Fifty-cent rheometer for yield stress measurements—from slump to spreading flow. J Rheol 49(3):705–718CrossRefGoogle Scholar
  24. 24.
    Roussel N, Stefani C, Leroy R (2005) From mini cone test to Abrams cone test: measurement of cement based materials yield stress using slump tests. Cem Concr Res 35(5):817–822CrossRefGoogle Scholar
  25. 25.
    Gram A, Silfwerbrand J (2011) Numerical simulation of fresh SCC flow: applications. Mater Struct 44:805–813CrossRefGoogle Scholar
  26. 26.
    Takashima H, Miyagai K, Hashida T, Li VC (2003) A design approach for the mechanical properties of polypropylene discontinuous fiber reinforced cementitious composites by extrusion molding. Eng Fract Mech 70(7–8):853–870CrossRefGoogle Scholar

Copyright information

© RILEM 2013

Authors and Affiliations

  • Viktor Mechtcherine
    • 1
  • Annika Gram
    • 2
  • Knut Krenzer
    • 3
  • Jörg-Henry Schwabe
    • 4
  • Sergiy Shyshko
    • 1
  • Nicolas Roussel
    • 5
  1. 1.Institute of Construction MaterialsTechnische Universität DresdenDresdenGermany
  2. 2.Swedish Cement and Concrete Research Institute, CBIStockholmSweden
  3. 3.Institut für Angewandte Bauforschung Weimar gGmbH (Formerly Institut für Fertigteiltechnik und Fertigbau Weimar e.V.)WeimarGermany
  4. 4.University of Applied ScienceJenaGermany
  5. 5.Université Paris Est, IFSTTARParisFrance

Personalised recommendations