Materials and Structures

, Volume 46, Issue 4, pp 683–696 | Cite as

Evaluation of the structure-induced rolling resistance (SRR) for pavements including viscoelastic material layers

Original Article


This article addresses the question of whether the viscoelastic behavior of asphalt pavements, as part of the factors that impact the rolling resistance, might lead to substantially higher energy consumption of road traffic, as compared to non-dissipative pavements. In the context of sustainable development (fuel consumption, gas emission), this is a current issue for the pavement design community. This problem is tackled by a theoretical approach which consists in computing the structure-induced rolling resistance (SRR) for a vehicle by using the mechanical response of a layered viscoelastic medium excited by moving loads (i.e. tires of the vehicle). The structure-induced power dissipation is shown to be proportional to the integral over contours of the applied loads of the pavement deflection, times the outward normal to these contours. Following the developed approach, the determination of the SRR force engendered by the structure-induced dissipation is obtained from the computation of the deflection of the viscoelastic pavement to an assumed pressure distribution. Such an approach applied to a thick asphalt pavement allows the SRR for a typical road structure to be evaluated as a function of temperature and speed. A non-dimensional analysis is also presented to extend the results to some other contexts. Under the assumptions made for the derivation of the SRR, the main conclusion of the case study is that the extra fuel consumption for a vehicle resulting from the viscoelastic behavior of asphalt pavements is small.


Rolling resistance Moving load Viscoelasticity Layered medium Asphalt pavement 


  1. 1.
    Benbow E, Iaquinta J, Lodge R, Wright A (2007) Investigation of the effects of pavement stiffness on fuel consumption, published project report ppr 253, TRL LimitedGoogle Scholar
  2. 2.
    Bendtsen H (2004) Rolling resistance, fuel consumption and emissions: a literature review. SILVIA project reportGoogle Scholar
  3. 3.
    Chabot A, Piau JM (2001) Calcul semi-analytique d’un massif viscoélastique soumis à une charge roulante rectangulaire, 1ere conférence international Albert Caquot, Paris, FranceGoogle Scholar
  4. 4.
    Chabot A, Chupin O, Deloffre L, Duhamel D (2010) Viscoroute 2.0: a tool for the simulation of moving load effects on asphalt pavement. RMPD Special Issue on Recent Advances in Numerical Simulation of Pavements 11(2):227–250Google Scholar
  5. 5.
    Chailleux E, Ramond G, Such C, de la Roche C (2006) A mathematical-based master-curve construction method applied to complex modulus of bituminous materials. Roads Materials and Pavement Design 7 (EATA Special Issue):75–92Google Scholar
  6. 6.
    Chupin O, Chabot A, Piau JM, Duhamel D (2010) Influence of sliding interfaces on the response of a layered viscoelastic medium under a moving load. Int J Solids Struct 47:3435–3446MATHCrossRefGoogle Scholar
  7. 7.
    Corte JF, Goux MT (1996) Design of pavement structures: the French technical guide. Transp Res Rep 1539:116–124CrossRefGoogle Scholar
  8. 8.
    Duhamel D, Chabot A, Tamagny P, Harfouche L (2005) ViscoRoute: visco-elastic modeling for asphalt pavements. Bulletin des Laboratoires des Ponts et Chaussées 258–259:89–103.
  9. 9.
    EAPA (2004) Environmental impacts and fuel efficiency of road pavements. EAPA & Eurobitume Industry Report, March 2004Google Scholar
  10. 10.
    Glaeser KP (2005) Measurements of rolling resistance of tyres on road surfaces. IEA workshop, Paris, November 15–16Google Scholar
  11. 11.
    Hammoum F, Chabot A, St-Laurent D, Chollet H, Vulturescu B (2010) Effects of accelerating and decelerating tramway loads on bituminous pavement. Mater Struct 43:1257–1269CrossRefGoogle Scholar
  12. 12.
    Huet C (1963) Etude par une méthode d’impédance du comportement viscoélastique des matériaux hydrocarbonés. Université de Paris (France), Ph.D. thesisGoogle Scholar
  13. 13.
    Huet C (1999) Coupled size and boundary-condition effects in viscoelastic heterogeneous and composite bodies. Mech Mater 31:787–829CrossRefGoogle Scholar
  14. 14.
    Igwe EA, Ayotamuno MJ, Okparanma RN, Ogaji SOT, Probert SD (2009) Road-surface properties affecting rates of energy dissipation from vehicles. Appl Energy 86:1692–1696CrossRefGoogle Scholar
  15. 15.
    Lemaitre J, Chaboche JL (1996) Mécanique des matériaux solides. Dunod, ParisGoogle Scholar
  16. 16.
    Lepert P, Brillet F (2009) The overall effects of road works on global warming gas emissions. Transp Res Part D 14:576–584CrossRefGoogle Scholar
  17. 17.
    Perriot A (2008) Route et énergie: comment la chaussée peut peser sur la consummation des véhicules. Colas reportGoogle Scholar
  18. 18.
    Sandberg T (2001) Heavy truck modelling for fuel consumption. Simulations and measurements. Thesis No. 924, Linköping University, SwedenGoogle Scholar
  19. 19.
    Sayegh G (1965) Contribution à l’étude des propriétés viscoélastiques des bitumes purs et des bétons bitumineux. Faculté des Sciences de Paris (France), Ph.D. thesisGoogle Scholar
  20. 20.
    SETRA-LCPC (1997) French design manual for pavement structures. Laboratoire Central des Ponts et Chaussées and Service d’Etudes Techniques des Routes et AutoroutesGoogle Scholar
  21. 21.
    Staverman AJ, Schwarzl P (1952) Thermodynamics of viscoelastic behaviour (model theory). Proc Acad Sci Neth 55:474–485MATHGoogle Scholar
  22. 22.
    Staverman AJ, Schwarzl P (1952) Non-equilibrium thermodynamics of visco-elastic behaviour. Proc Acad Sci Neth 55:486–492MATHGoogle Scholar
  23. 23.
    Taylor GW, Patten JD (2006) Effects of pavement structure on vehicle fuel consumption—phase III, NRC-CNRC technical reportGoogle Scholar
  24. 24.
    Zaabar I, Chatti K (2010) Calibration of HDM-4 models for estimating the effect of pavement roughness on fuel consumption for U. S. conditions. Transp Res Rec: J Transp Res Board 2155:105–116CrossRefGoogle Scholar
  25. 25.
    Zaabar I, Chatti K (2011) A field investigation of the effect of pavement surface conditions on fuel consumption. In: Proceedings of the 90th annual meeting of Transportation Research Board, Washington DCGoogle Scholar
  26. 26.
    Zaniewski J (1989) Effect of pavement surface type on fuel consumption. Portland Cement Association, SkokieGoogle Scholar

Copyright information

© RILEM 2012

Authors and Affiliations

  1. 1.LUNAM Université, IFSTTAR, IM, StructuresBouguenaisFrance

Personalised recommendations