Skip to main content
Log in

Fluidity of hydraulic grouts for masonry strengthening

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Design of hydraulic grouts for strengthening of masonry historical buildings seems to follow a rather empirical procedure, with all the related uncertainties, both in economical and efficiency terms. This paper is part of a broader attempt to establish a rational methodology for the design of such grouts, based on their discrete injectability characteristics, i.e. (i) penetrability, (ii) fluidity and (iii) stability. The first part of this holistic methodology proposing a procedure to be followed in order to make a first selection of suitable grain size distribution of solid materials of the grout to fulfill penetrability requirements was published elsewhere. The second part regarding the fluidity of the grouts is the subject of this paper. A new practical fluidity measurement is proposed (the fluidity factor test [FFT]); and a “fluidity factor” is defined. It is proved that the follow-up of this factor as a function of the water-to-solids ratio may reveal fundamental characteristics of the grout-composition under design. The influence of the mixing method and superplasticizer on grout’s fluidity is also examined. The paper concludes with a case study to highlight the practical use of the proposed test. Furthermore, stability of the suspension against segregation or excessive bleeding should also be ensured since, otherwise, blockage may soon appear and the quality of the intervention could be severely affected. This matter is examined by the authors in a separate paper, where specific semi empirical formulae permitting a first selection of water content and percentage of ultrafine materials, useful for the design of a grout composition are proposed.

Résumé

L’étude de la composition des coulis hydrauliques pour le renforcement des structures historiques en maçonnerie obéit souvent à des procédures plutôt empiriques accompagnées d’incertitudes tant en termes d’économie que d’efficacité. Cet article fait partie d’une tentative plus générale destinée à établir une méthodologie rationnelle permettant la formulation des coulis hydrauliques par l’intermédiaire d’une analyse de leurs propriétés d’injectabilité i.e.(i) Pénétrabilité, (ii) Fluidité et (iii) Stabilité. La première partie de cette méthodologie proposant la procédure à suivre pour estimer la distribution adéquate des grains de la phase solide du coulis a déjà été publiée. La seconde partie de cette méthodologie traitant de la fluidité des coulis constitue le sujet de cet article. Une nouvelle méthode pour la mesure de la fluidité est proposée [Test de Facteur de Fluidité, - Fluidity Factor Test (FFT)] et un facteur de fluidité est défini. Il est prouvé que l’analyse de l’évolution de ce facteur en fonction du rapport eau sur solides peut révéler des caractéristiques fondamentales sur la composition du coulis en cours de définition. L’influence de la méthode de malaxage et du superplastifiant sur la fluidité du coulis est également examinée. L’article présente en conclusion un cas concret pour mieux démontrer l’usage pratique du test proposé. La stabilité du coulis contre une sédimentation excessive ou la ségrégation doit aussi être assurée. Dans le cas contraire, un blocage peut apparaitre et la qualité de l’intervention peut ainsi être sérieusement compromise. Ce sujet est examiné par les auteurs dans un article séparé, dans lequel des formules spécifiques semi-empiriques permettant une prédétermination du pourcentage d’eau et des éléments ultrafins sont proposées.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Relative references for the sand-column test is given in § 3. See also [1, 6, 11, 22, 29].

References

  1. Miltiadou-Fezans A, Tassios TP (2003) Penetrability of hydraulic grouts in structural strengthening. In: Dr. Barsony (ed) Structural research, Anniversary volume honouring Peter Lenkei. University of Pecs, Hungary

  2. Miltiadou-Fezans A, Tassios TP (2006) New rational criteria for the holistic design of hydraulic grouts. In: 1st Conference on Restoration of the Society for Research and Promotion of Scientific Restoration of Monuments (ETEPAM), Thessaloniki (in Greek)

  3. Yahia A, Khayat KH (2003) Applicability of rheological models to high-performance grouts containing supplementary cementitious materials and viscosity enhancing admixture. Mater Struct 36:402–412

    Article  Google Scholar 

  4. Saric-Coric M, Khayat KH, Tagnit-Hamou A (2003) Performance characteristics of cement grouts made with various combinations of high-range water reducer and cellulose-based viscosity modifier. Cem Concr Res 33:1999–2008

    Article  Google Scholar 

  5. Valluzzi MR, da Porto F, Modena C (2003) Grout requirements for the injection of stone masonry walls. In: International conference on performance of construction materials—a new era of building, Cairo, Egypt, 18–20 February 2003

  6. Toumbakari E-E (2002) Lime-pozzolan-cement grouts and their structural effects on composite masonry walls, PhD Thesis, Katholieke Universiteit Leuven

  7. Mirza J, Mirza MS, Roy V, Saleh K (2002) Basic rheological and mechanical properties of high-volume fly ash grouts. Constr Build Mater 16:353–363

    Article  Google Scholar 

  8. Van Rickstal F (2000) Grout injection of masonry, scientific approach and modeling. Katholieke Universiteit Leuven, PhD Thesis

  9. Khayat KH, Yahia A (1998) Simple field tests to characterize fluidity and washout resistance of structural cement grout. Cement, Concrete and aggregates. CCAGDP 20(1):145–156

    Google Scholar 

  10. Viseur V, Barrioulet M (1998) Critères d’injectabilité de coulis de ciments ultrafins. Mater Struct 31:393–399

    Article  Google Scholar 

  11. Miltiadou AE (1990) Étude des coulis hydrauliques pour la réparation et le renforcement des structures et des monuments historiques en maçonnerie. Pub of ENPC Doctorate Thesis in Etudes et Recherches des Laboratoires des Ponts et Chaussées, Série ouvrages d’art OA8, LCPC, Paris, p 278

  12. Ranisch E-H; Rostasy FS; Herschelman F (1989) Properties of cement grouts with silica fume addition for the injection of post-tensioning ducts. In: Proceedings of the third international conference on the use of fly ash, silica fume, slag and natural pozzolans in concrete, vol 2, Trondheim, 18–23 June 1989. ACI Special Publication SP 114-56, Trondheim, pp 1159–1171

  13. Domone PL, Tank SB (1986) Use of condensed silica fume in portland cement grouts. In: Proceedings of the second international conference on fly ash, silica fume, slag and natural pozzolans in concrete, vol 2, Madrid, Spain, pp 1231–1260

  14. Aïtcin PC, Ballivy G, Parizeau R (1984) The use of condensed silica fume in grouts. Innovative cement grouting. ACI Special Publication SP-83, Detroit, pp 1–18

  15. Littlejohn GS (1982) Design of cement based grouts. In: Proceedings of the conference on grouting in geotechnical engineering. ASCE, New Orleans, 10–12 February 1982, pp 1–7

  16. Huang WH (1974) An investigation of the fluid characteristics of the cement grouts. J Test Eval 2:516–521

    Article  Google Scholar 

  17. Richie AGB (1965) The rheology of cement grout. Cement and lime. Manufacture 39:9–17

    Google Scholar 

  18. Papadakis M (1959) L’injectabilité des coulis et mortiers de ciments. Revue des matériaux de construction, 531, publication technique No. 11 du CERILH, Paris, p 48

  19. Papadakis M (1957) Recherches sur le malaxage “a haute turbulence” des suspensions de ciment. Publication Technique No. 82-83. Extrait de la Revue des Matériaux de Construction, CERILH, Paris, pp 1–25

  20. Agulló L, Toralles-Carbonari B, Gettu R, Aguado A (1999) Fluidity of cement pastes with mineral admixtures and superplasticizer. A study based on the marsh cone test. Mater Struct 32:479–485

    Article  Google Scholar 

  21. Lombardi G (1985) The role of cohesion in cement grouting of rock, vol 3. In: 15th congress on large dams. Commission Internationale des Grands Barrages, Lausanne, pp 235–261

  22. Paillère A-M, Rizoulières Y (1978) Réparation des structures en béton par injection de polymères. Bulletin de liaison des Laboratoires des Ponts et Chaussées 96:17–23

    Google Scholar 

  23. Miltiadou-Fezans A, Kalagri A, Triantafyllou M (2006) Research report for the design of hydraulic grouts for the consolidation and restoration of the Katholikon of Dafni Monastery. Comparative study of hydraulic lime based grouts. Research report, Directorate of Technical Research on Restoration, Hellenic Ministry of Culture, Athens, p 68 (in Greek)

  24. Hu C (1995) Rhéologie des betons fluids. Etudes et Recherches des Laboratoires des Ponts et Chaussées. Série ouvrages d’art OA16, LCPC, p 202

  25. Tattersall GH, Baker PH (1988) The effect of vibration on the rheological properties of fresh concrete. Mag Concr Res 40(143):79–89

    Article  Google Scholar 

  26. Legrand C (1982) La structure des suspensions de ciments. Le béton hydraulique, Presses de l’ École Nationale des Ponts et Chaussées, Paris, pp 99–113

  27. Roy DM, Asaga K (1979) Rheological properties of cement mixes: III. The effects of mixing procedures on viscometric properties of mixes containing superplasticizers. Cem Concr Res 9(6):731–739

    Article  Google Scholar 

  28. Bombled JP (1974) Rhéologie des mortiers et des bétons frais, étude de la pâte interstitielle de ciment. Revue des matériaux de construction 688:137–155

    Google Scholar 

  29. Paillère A-M, Buil M, Miltiadou A, Guinez R, Serrano JJ (1989) Use of silica fume and superplasticizers in cement grouts for injection of fine cracks. In: Proceedings of the third international conference on use of fly ash, silica fume, slag and natural pozzolans in concrete, vol 2, Trondheim, Norway. SP-ACI, Trondheim, pp 1131–1157

  30. Paillère AM, Serrano JJ, Grimaldi G (1990) Influence du dosage et du mode d’introduction des superplastifiants sur le maintien de la maniabilité optimale des bétons a hautes performances avec et sans fumée de silice. Bull liaison Laboratoires des Ponts et Chausseés. 170:37–45

  31. Lapasin R, Longo V, Rajgelj S (1980) The effect of the water reducer addition on the rheological properties of cement pastes. In: 7th international congress on the chemistry of cement, vol III, pp VI-135–VI-140

  32. Banfill PFG (1980) Workability of flowing concrete. Mag Concr Res 32(110):17–27

    Article  Google Scholar 

  33. Buil M, Paillere AM, Musicas AM (1989) Effect of superplasticizers on the pozzolanic reactivity of silica fumes. In: Proceedings of the third international conference on fly ash, silica fume and natural pozzolans in concrete, Trondheim, Norway; supplementary papers

  34. Andersen PJ, Roy DM (1987) The effects of adsorption of superplasticizers on the surface of cement. Cem Concr Res 17:805–813

    Article  Google Scholar 

  35. Malhotra VM (1979) Performance of superplasticized concretes that have high water to cement ratios, superplasticizers in concrete, TRF 720. National Academy of Sciences, Washington DC, pp 28–34

  36. Daimon M, Roy DM (1978) Rheological properties of cement mixes: I. Methods, preliminary experiments, and adsorption studies. Cem Concr Res 8:753–764

    Article  Google Scholar 

  37. Daimon M, Roy DM (1979) Rheological properties of cement mixes: II. Zeta potential and preliminary viscosity studies. Cem Concr Res 9:103–110

    Article  Google Scholar 

  38. Rixom M (1978) Chemical admixtures for concrete. E. & F.N. Spon, London

  39. Miltiadou-Fezans A, Anagnostopoulou S, Kalagri A (2006) Restoration mortars and grouts for consolidation of the Cells of internal yard of Dafni Monastery. In: 1st conference on restoration, Society for Research and Promotion of Scientific Restoration of Monuments (ETEPAM), Thessaloniki (in Greek)

Download references

Acknowledgments

Thanks are due to Sophie Anagnostopoulou, MSc. Chemical Engineer, Anna Kalagri, MSc. Chemical Engineer and Conservator of Art and Panagiota Psimogerakou MSc Civil Engineer, for their help with the experiments and the graphics of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Androniki Miltiadou-Fezans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miltiadou-Fezans, A., Tassios, T.P. Fluidity of hydraulic grouts for masonry strengthening. Mater Struct 45, 1817–1828 (2012). https://doi.org/10.1617/s11527-012-9872-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-012-9872-8

Keywords

Navigation