Advertisement

Materials and Structures

, Volume 45, Issue 12, pp 1817–1828 | Cite as

Fluidity of hydraulic grouts for masonry strengthening

  • Androniki Miltiadou-Fezans
  • Theodossios P. Tassios
Original Article

Abstract

Design of hydraulic grouts for strengthening of masonry historical buildings seems to follow a rather empirical procedure, with all the related uncertainties, both in economical and efficiency terms. This paper is part of a broader attempt to establish a rational methodology for the design of such grouts, based on their discrete injectability characteristics, i.e. (i) penetrability, (ii) fluidity and (iii) stability. The first part of this holistic methodology proposing a procedure to be followed in order to make a first selection of suitable grain size distribution of solid materials of the grout to fulfill penetrability requirements was published elsewhere. The second part regarding the fluidity of the grouts is the subject of this paper. A new practical fluidity measurement is proposed (the fluidity factor test [FFT]); and a “fluidity factor” is defined. It is proved that the follow-up of this factor as a function of the water-to-solids ratio may reveal fundamental characteristics of the grout-composition under design. The influence of the mixing method and superplasticizer on grout’s fluidity is also examined. The paper concludes with a case study to highlight the practical use of the proposed test. Furthermore, stability of the suspension against segregation or excessive bleeding should also be ensured since, otherwise, blockage may soon appear and the quality of the intervention could be severely affected. This matter is examined by the authors in a separate paper, where specific semi empirical formulae permitting a first selection of water content and percentage of ultrafine materials, useful for the design of a grout composition are proposed.

Keywords

Hydraulic grouts Injectability Fluidity Marsh cone Fluidity factor Mixing method Superplasticizer 

Résumé

L’étude de la composition des coulis hydrauliques pour le renforcement des structures historiques en maçonnerie obéit souvent à des procédures plutôt empiriques accompagnées d’incertitudes tant en termes d’économie que d’efficacité. Cet article fait partie d’une tentative plus générale destinée à établir une méthodologie rationnelle permettant la formulation des coulis hydrauliques par l’intermédiaire d’une analyse de leurs propriétés d’injectabilité i.e.(i) Pénétrabilité, (ii) Fluidité et (iii) Stabilité. La première partie de cette méthodologie proposant la procédure à suivre pour estimer la distribution adéquate des grains de la phase solide du coulis a déjà été publiée. La seconde partie de cette méthodologie traitant de la fluidité des coulis constitue le sujet de cet article. Une nouvelle méthode pour la mesure de la fluidité est proposée [Test de Facteur de Fluidité, - Fluidity Factor Test (FFT)] et un facteur de fluidité est défini. Il est prouvé que l’analyse de l’évolution de ce facteur en fonction du rapport eau sur solides peut révéler des caractéristiques fondamentales sur la composition du coulis en cours de définition. L’influence de la méthode de malaxage et du superplastifiant sur la fluidité du coulis est également examinée. L’article présente en conclusion un cas concret pour mieux démontrer l’usage pratique du test proposé. La stabilité du coulis contre une sédimentation excessive ou la ségrégation doit aussi être assurée. Dans le cas contraire, un blocage peut apparaitre et la qualité de l’intervention peut ainsi être sérieusement compromise. Ce sujet est examiné par les auteurs dans un article séparé, dans lequel des formules spécifiques semi-empiriques permettant une prédétermination du pourcentage d’eau et des éléments ultrafins sont proposées.

Notes

Acknowledgments

Thanks are due to Sophie Anagnostopoulou, MSc. Chemical Engineer, Anna Kalagri, MSc. Chemical Engineer and Conservator of Art and Panagiota Psimogerakou MSc Civil Engineer, for their help with the experiments and the graphics of this paper.

References

  1. 1.
    Miltiadou-Fezans A, Tassios TP (2003) Penetrability of hydraulic grouts in structural strengthening. In: Dr. Barsony (ed) Structural research, Anniversary volume honouring Peter Lenkei. University of Pecs, HungaryGoogle Scholar
  2. 2.
    Miltiadou-Fezans A, Tassios TP (2006) New rational criteria for the holistic design of hydraulic grouts. In: 1st Conference on Restoration of the Society for Research and Promotion of Scientific Restoration of Monuments (ETEPAM), Thessaloniki (in Greek)Google Scholar
  3. 3.
    Yahia A, Khayat KH (2003) Applicability of rheological models to high-performance grouts containing supplementary cementitious materials and viscosity enhancing admixture. Mater Struct 36:402–412CrossRefGoogle Scholar
  4. 4.
    Saric-Coric M, Khayat KH, Tagnit-Hamou A (2003) Performance characteristics of cement grouts made with various combinations of high-range water reducer and cellulose-based viscosity modifier. Cem Concr Res 33:1999–2008CrossRefGoogle Scholar
  5. 5.
    Valluzzi MR, da Porto F, Modena C (2003) Grout requirements for the injection of stone masonry walls. In: International conference on performance of construction materials—a new era of building, Cairo, Egypt, 18–20 February 2003Google Scholar
  6. 6.
    Toumbakari E-E (2002) Lime-pozzolan-cement grouts and their structural effects on composite masonry walls, PhD Thesis, Katholieke Universiteit LeuvenGoogle Scholar
  7. 7.
    Mirza J, Mirza MS, Roy V, Saleh K (2002) Basic rheological and mechanical properties of high-volume fly ash grouts. Constr Build Mater 16:353–363CrossRefGoogle Scholar
  8. 8.
    Van Rickstal F (2000) Grout injection of masonry, scientific approach and modeling. Katholieke Universiteit Leuven, PhD ThesisGoogle Scholar
  9. 9.
    Khayat KH, Yahia A (1998) Simple field tests to characterize fluidity and washout resistance of structural cement grout. Cement, Concrete and aggregates. CCAGDP 20(1):145–156Google Scholar
  10. 10.
    Viseur V, Barrioulet M (1998) Critères d’injectabilité de coulis de ciments ultrafins. Mater Struct 31:393–399CrossRefGoogle Scholar
  11. 11.
    Miltiadou AE (1990) Étude des coulis hydrauliques pour la réparation et le renforcement des structures et des monuments historiques en maçonnerie. Pub of ENPC Doctorate Thesis in Etudes et Recherches des Laboratoires des Ponts et Chaussées, Série ouvrages d’art OA8, LCPC, Paris, p 278Google Scholar
  12. 12.
    Ranisch E-H; Rostasy FS; Herschelman F (1989) Properties of cement grouts with silica fume addition for the injection of post-tensioning ducts. In: Proceedings of the third international conference on the use of fly ash, silica fume, slag and natural pozzolans in concrete, vol 2, Trondheim, 18–23 June 1989. ACI Special Publication SP 114-56, Trondheim, pp 1159–1171Google Scholar
  13. 13.
    Domone PL, Tank SB (1986) Use of condensed silica fume in portland cement grouts. In: Proceedings of the second international conference on fly ash, silica fume, slag and natural pozzolans in concrete, vol 2, Madrid, Spain, pp 1231–1260Google Scholar
  14. 14.
    Aïtcin PC, Ballivy G, Parizeau R (1984) The use of condensed silica fume in grouts. Innovative cement grouting. ACI Special Publication SP-83, Detroit, pp 1–18Google Scholar
  15. 15.
    Littlejohn GS (1982) Design of cement based grouts. In: Proceedings of the conference on grouting in geotechnical engineering. ASCE, New Orleans, 10–12 February 1982, pp 1–7Google Scholar
  16. 16.
    Huang WH (1974) An investigation of the fluid characteristics of the cement grouts. J Test Eval 2:516–521CrossRefGoogle Scholar
  17. 17.
    Richie AGB (1965) The rheology of cement grout. Cement and lime. Manufacture 39:9–17Google Scholar
  18. 18.
    Papadakis M (1959) L’injectabilité des coulis et mortiers de ciments. Revue des matériaux de construction, 531, publication technique No. 11 du CERILH, Paris, p 48Google Scholar
  19. 19.
    Papadakis M (1957) Recherches sur le malaxage “a haute turbulence” des suspensions de ciment. Publication Technique No. 82-83. Extrait de la Revue des Matériaux de Construction, CERILH, Paris, pp 1–25Google Scholar
  20. 20.
    Agulló L, Toralles-Carbonari B, Gettu R, Aguado A (1999) Fluidity of cement pastes with mineral admixtures and superplasticizer. A study based on the marsh cone test. Mater Struct 32:479–485CrossRefGoogle Scholar
  21. 21.
    Lombardi G (1985) The role of cohesion in cement grouting of rock, vol 3. In: 15th congress on large dams. Commission Internationale des Grands Barrages, Lausanne, pp 235–261Google Scholar
  22. 22.
    Paillère A-M, Rizoulières Y (1978) Réparation des structures en béton par injection de polymères. Bulletin de liaison des Laboratoires des Ponts et Chaussées 96:17–23Google Scholar
  23. 23.
    Miltiadou-Fezans A, Kalagri A, Triantafyllou M (2006) Research report for the design of hydraulic grouts for the consolidation and restoration of the Katholikon of Dafni Monastery. Comparative study of hydraulic lime based grouts. Research report, Directorate of Technical Research on Restoration, Hellenic Ministry of Culture, Athens, p 68 (in Greek)Google Scholar
  24. 24.
    Hu C (1995) Rhéologie des betons fluids. Etudes et Recherches des Laboratoires des Ponts et Chaussées. Série ouvrages d’art OA16, LCPC, p 202Google Scholar
  25. 25.
    Tattersall GH, Baker PH (1988) The effect of vibration on the rheological properties of fresh concrete. Mag Concr Res 40(143):79–89CrossRefGoogle Scholar
  26. 26.
    Legrand C (1982) La structure des suspensions de ciments. Le béton hydraulique, Presses de l’ École Nationale des Ponts et Chaussées, Paris, pp 99–113Google Scholar
  27. 27.
    Roy DM, Asaga K (1979) Rheological properties of cement mixes: III. The effects of mixing procedures on viscometric properties of mixes containing superplasticizers. Cem Concr Res 9(6):731–739CrossRefGoogle Scholar
  28. 28.
    Bombled JP (1974) Rhéologie des mortiers et des bétons frais, étude de la pâte interstitielle de ciment. Revue des matériaux de construction 688:137–155Google Scholar
  29. 29.
    Paillère A-M, Buil M, Miltiadou A, Guinez R, Serrano JJ (1989) Use of silica fume and superplasticizers in cement grouts for injection of fine cracks. In: Proceedings of the third international conference on use of fly ash, silica fume, slag and natural pozzolans in concrete, vol 2, Trondheim, Norway. SP-ACI, Trondheim, pp 1131–1157Google Scholar
  30. 30.
    Paillère AM, Serrano JJ, Grimaldi G (1990) Influence du dosage et du mode d’introduction des superplastifiants sur le maintien de la maniabilité optimale des bétons a hautes performances avec et sans fumée de silice. Bull liaison Laboratoires des Ponts et Chausseés. 170:37–45Google Scholar
  31. 31.
    Lapasin R, Longo V, Rajgelj S (1980) The effect of the water reducer addition on the rheological properties of cement pastes. In: 7th international congress on the chemistry of cement, vol III, pp VI-135–VI-140Google Scholar
  32. 32.
    Banfill PFG (1980) Workability of flowing concrete. Mag Concr Res 32(110):17–27CrossRefGoogle Scholar
  33. 33.
    Buil M, Paillere AM, Musicas AM (1989) Effect of superplasticizers on the pozzolanic reactivity of silica fumes. In: Proceedings of the third international conference on fly ash, silica fume and natural pozzolans in concrete, Trondheim, Norway; supplementary papersGoogle Scholar
  34. 34.
    Andersen PJ, Roy DM (1987) The effects of adsorption of superplasticizers on the surface of cement. Cem Concr Res 17:805–813CrossRefGoogle Scholar
  35. 35.
    Malhotra VM (1979) Performance of superplasticized concretes that have high water to cement ratios, superplasticizers in concrete, TRF 720. National Academy of Sciences, Washington DC, pp 28–34Google Scholar
  36. 36.
    Daimon M, Roy DM (1978) Rheological properties of cement mixes: I. Methods, preliminary experiments, and adsorption studies. Cem Concr Res 8:753–764CrossRefGoogle Scholar
  37. 37.
    Daimon M, Roy DM (1979) Rheological properties of cement mixes: II. Zeta potential and preliminary viscosity studies. Cem Concr Res 9:103–110CrossRefGoogle Scholar
  38. 38.
    Rixom M (1978) Chemical admixtures for concrete. E. & F.N. Spon, LondonGoogle Scholar
  39. 39.
    Miltiadou-Fezans A, Anagnostopoulou S, Kalagri A (2006) Restoration mortars and grouts for consolidation of the Cells of internal yard of Dafni Monastery. In: 1st conference on restoration, Society for Research and Promotion of Scientific Restoration of Monuments (ETEPAM), Thessaloniki (in Greek)Google Scholar

Copyright information

© RILEM 2012

Authors and Affiliations

  • Androniki Miltiadou-Fezans
    • 1
  • Theodossios P. Tassios
    • 2
  1. 1.Hellenic Ministry of Culture and TourismAthensGreece
  2. 2.National Technical University of AthensGreeceAthens

Personalised recommendations