Materials and Structures

, Volume 45, Issue 10, pp 1473–1485 | Cite as

New model for the indirect determination of the tensile stress–strain curve of concrete by means of the Brazilian test

Original Article


On the basis of the results from an experimental campaign and using simple expressions, a model for the indirect determination of the tensile stress–strain curve of concrete by means of a splitting tensile test (Brazilian test) is proposed. By testing complete specimens as well as specimens cut along the loading plane it was possible to determine the equivalent tensile strength component produced in the cylinder subjected to diametral compression. The model made it possible to reproduce adequately the behavior observed in tests carried out with both cylindrical and cubic specimens of materials such as concrete, mortar and rock. This model, if complemented with a more extensive experimental campaign, would provide an expression for the determination of the tensile stress–strain curve of several concretes or quasi-fragile materials.


Splitting tensile test Tensile strength of concrete Tensile stress–strain relationship 



The authors wish to acknowledge the collaboration of D. Morales, an undergraduate student at UTFSM of Chile. S. Carmona’s stay in Barcelona throughout the development of this research was funded by the Fundación Carolina from Spain, the UPC from Barcelona (Spain) and the UTFSM from Valparaíso (Chile). Likewise, the authors also wish to thank Spain’s Ministry of Science and Innovation for granting them the project BIA2010-20.913-C02-02, titled “Expansive reactions in concrete works: prevention, diagnosis and prediction of their future evolution”.


  1. 1.
    CRD (1992) CRD C 164 standard test method for direct tensile strength of cylindrical concrete or mortar specimens, Corps of Engineers, CRD-C, Handbook for Concrete and Cement, USA, pp 4Google Scholar
  2. 2.
    RILEM TC 162-TDF (Recommendations) (2001) Test and design methods for steel fibre reinforced concrete. Uni-axial tension test for steel fibre reinforced concrete. Mater Struct 34(235):3–6Google Scholar
  3. 3.
    ASTM International (2010) ASTM C293/C293M-10 standard test method for flexural strength of concrete (using simple beam with center-point loading), Annual Book of ASTM Standards, 04(02):3Google Scholar
  4. 4.
    AENOR (2009) UNE-EN 12390-5. Ensayos de hormigón endurecido. Parte 5: Resistencia a flexión de probetas. Madrid, España, pp 12 (in Spanish)Google Scholar
  5. 5.
    ASTM International (2010) ASTM C78/C78M-10 standard test method for flexural strength of concrete (using simple beam with third-point loading), Annual Book of ASTM Standards, 04(02):4Google Scholar
  6. 6.
    Carneiro F, Barcellos A (1949) A Résistance a la traction des betons. RILEM Bull 13:98–125Google Scholar
  7. 7.
    Molins C, Aguado A, Saludes S (2009) Double punch test to control the tensile properties of FRC (Barcelona Test). Mater Struct 42:415–425. doi: 10.1617/s11527-008-9391-9 CrossRefGoogle Scholar
  8. 8.
    AENOR (2010) UNE 83515, Hormigones con fibras. Determinación de la resistencia a fisuración, tenacidad y resistencia residual a tracción. Método Barcelona. Madrid, España, pp 10 (in Spanish)Google Scholar
  9. 9.
    Chen W (1970) Double punch test for tensile strength of concrete. ACI Mater J 67(2):993–995Google Scholar
  10. 10.
    Ozyldirim C, Carino N (2006) Concrete strength testing, en significance of tests and properties of concrete and concrete-making materials. In: Lamond JF, Pielert JH (eds), ASTM STP 169 D, ASTM International, USA, pp 664Google Scholar
  11. 11.
    AENOR (2010) UNE-EN 12390-6, Ensayos de hormigón endurecido. Parte 6: Resistencia a tracción indirecta de probetas, Madrid, España, pp 14 (in Spanish)Google Scholar
  12. 12.
    RILEM (1994) Tension splitting of concrete specimen, CPC6, 1975, Rilem Technical Recommendation for the Testing and Use of Construction Materials, E&FN Spon, London. pp 21–22Google Scholar
  13. 13.
    Castro-Montero A, Jia Z, Shah S (1995) Evaluation of damage in Brazilian test using holographic interferometry. ACI Mater J 92(2):268–275Google Scholar
  14. 14.
    Carmona S, Gettu R, Aguado A (1998) Study of the post-peak behavior of concrete in the splitting-tension test, fracture mechanics of concrete structures. In: Mihashi H, Rokugo K (eds) Proceedings of Third International Conference, Gifu, Japan, vol 1. AEDIFICATIO Publishers, Freiburg, pp 111–120Google Scholar
  15. 15.
    Reinhardt H, Finck F, Grosse C, Kurz J (2007), Brazilian test of concrete evaluated by AE, earthquakes and acoustic emission. In: Carpinteri A, Lacidogna G (eds) Selected Papers from the 11th International Conference on Fracture, Turin, Italy, March 20–25, 2005, Taylor and Francis, London, pp 139–146Google Scholar
  16. 16.
    Rocco C, Guinea G, Planas J, Elices M (1999) Mechanisms of rupture in splitting tests. ACI Mater J 96:52–60Google Scholar
  17. 17.
    Chen A, Chen W (1976) Nonlinear analysis of concrete splitting tests. Comput Struct 6(6):451–457MATHCrossRefGoogle Scholar
  18. 18.
    Hondros G (1959) The evaluation of Poisson’s ratio and the modulus of materials of a low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete. Aust J Appl Sci 10:243–268Google Scholar
  19. 19.
    Lin Z, Wood L (2003) Concrete uniaxial tensile strength and cylinder splitting test. J Struct Eng 129(5):692–698CrossRefGoogle Scholar
  20. 20.
    Ruiz G, Ortiz M, Pandol A (2000) Three-dimensional finite-element simulation of the dynamic Brazilian tests on concrete cylinders. Int J Numer Methods Eng 48:963–994MATHCrossRefGoogle Scholar
  21. 21.
    Zhu W, Tang C (2006) Numerical simulation of Brazilian disk rock failure under static and dynamic loading. Int J Rock Mech Min Sci 43:236–252CrossRefGoogle Scholar
  22. 22.
    Carmona S, Fernández R, Aguado A, Gettu R (2006) Simplified calculation of the splitting: tensile strength of concrete using the strut-and-tie method (in Spanish). Hormigón y Acero 242:65–74Google Scholar
  23. 23.
    Olesen J, Østergaard L, Stang H (2006) Nonlinear fracture mechanics and plasticity of the split cylinder test. Mater Struct 39:421–432. doi: 10.1617/s11527-005-9018-3 CrossRefGoogle Scholar
  24. 24.
    Chen W (2007) Plasticity in reinforced concrete. J. Ross Publishing, USA 479Google Scholar
  25. 25.
    Rocco C, Guinea G, Planas J, Elices M (1999) Size effect and boundary conditions in the Brazilian test: experimental verification. Mater Struct 32:210–217CrossRefGoogle Scholar
  26. 26.
    Rocco C, Guinea G, Planas J, Elices M (1999) Size effect and boundary conditions in the Brazilian test: theoretical analysis. Mater Struct 32:437–444CrossRefGoogle Scholar
  27. 27.
    Rocco C, Guinea G, Planas J, Elices M (2001) Review of the splitting-test standards from a fracture mechanics point of view. Cem Concr Res 31:73–82CrossRefGoogle Scholar
  28. 28.
    Tang T (1994) Effects of load-distributed width on split tension of unnotched and notched cylindrical specimens. J Test Eval 22:401–409CrossRefGoogle Scholar
  29. 29.
    Sabins G, Mirza S (1979) Size effects in model concretes. J Struct Div 106:1007–1020Google Scholar
  30. 30.
    Bazant Z, Kazemi M, Hasegawa T, Mazars J (1991) Size effect in Brazilian split-cylinder test. Measurement and analysis. ACI Mater J 88:325–332Google Scholar
  31. 31.
    Hasegawa T (1985) Size effect on splitting tensile strength of concrete. In: Proceedings of JCI, pp 309–312Google Scholar
  32. 32.
    Bazant Z, Ozbolt J, Eligehausen R (1994) Fracture size effect: review of evidence for concrete structures. ASCE J Struct Eng 120:2377–2398CrossRefGoogle Scholar
  33. 33.
    Carmona S (2009) Effect of specimen size and loading conditions on indirect tensile test results. Materiales de Construcción 59(294):7–18CrossRefGoogle Scholar
  34. 34.
    Shah S, Swartz S, Ouyang C (1995) Fracture mechanics of concrete: applications of fracture mechanics to concrete, rock and other quasi-brittle materials. Wiley, New York, pp 588Google Scholar
  35. 35.
    AENOR (2009) UNE-EN 12390-2. Ensayos de hormigón endurecido. Parte 2: Fabricación y curado de probetas para ensayos de resistencia. Madrid, España, pp 12 (in Spanish)Google Scholar
  36. 36.
    Elices M, Guinea G, Planas J (1992) Measurement of the fracture energy using three-point bend test: Part 3 Influence of cutting the P–δ tail. Mater Struct 25:327–334CrossRefGoogle Scholar
  37. 37.
    Gettu R, Mobasher B, Carmona S, Jansen D (1996) Testing of concrete under closed-loop control. Adv Cem Based Mater 3(2):54–71Google Scholar
  38. 38.
    CEB-FIP (2010), Model code: first complete draft, Volumen 1, FIB Bulletin no 55, Marzo, pp 318Google Scholar
  39. 39.
    Laranjeira F (2010) Design-oriented constitutive model for steel fiber reinforced concrete, Tesis Doctoral, ETSECCPB, UPC, Barcelona, Spain, pp 318Google Scholar
  40. 40.
    Carreira D, Chu K (1986) Stress–strain relationship for reinforced concrete in tension. ACI J 83(1):21–28Google Scholar
  41. 41.
    Casanova I, Agulló L, Aguado A (1996) Aggregate expansivity due to sulfide oxidation-I. Reaction system and rate model. Cem Concr Res 26(7):993–998CrossRefGoogle Scholar
  42. 42.
    Barr B, Lee M (2003) Modelling the strain-softening behavior of plain concrete using a double-exponential model. Mag Concr Res 55(4):343–353CrossRefGoogle Scholar
  43. 43.
    RILEM TC 50-FMC (1985) Determination of the fracture energy of mortar and concrete by means of the three-point bend tests on notched beams. Mater Struct 18:45–48Google Scholar
  44. 44.
    AENOR (2009) UNE-EN 12390-3. Ensayos de hormigón endurecido. Parte 3: Determinación de la resistencia a compresión de probetas. Madrid, España, pp 22 (in Spanish)Google Scholar
  45. 45.
    ASTM International (2004) ASTM C496/C496M-04 Standard test method for splitting tensile strength of cylindrical concrete specimens, Annual Book of ASTM Standards, 04(02):281–284Google Scholar
  46. 46.
    Tang T, Shah S, Ouyang C (1992) Fracture mechanics and size effect of concrete in tension. J Struct Eng 118:3169–3185Google Scholar

Copyright information

© RILEM 2012

Authors and Affiliations

  1. 1.Departamento de Obras CivilesUniversidad Técnica Federico Santa MaríaValparaísoChile
  2. 2.Department of Construction EngineeringETSCCPB, Technical University of CataloniaBarcelonaSpain

Personalised recommendations