Materials and Structures

, Volume 43, Issue 10, pp 1413–1433 | Cite as

Thermodynamic equilibrium calculations in cementitious systems

  • Barbara Lothenbach
Original Article


This review paper aims at giving an overview of the different applications of thermodynamic equilibrium calculations in cementitious systems. They can help us to understand on a chemical level the consequences of different factors such as cement composition, hydration, leaching, or temperature on the composition and the properties of a hydrated cementitious system. Equilibrium calculations have been used successfully to compute the stable phase assemblages based on the solution composition as well as to model the stable phase assemblage in completely hydrated cements and thus to asses the influence of the chemical composition on the hydrate assemblage. Thermodynamic calculations can also, in combination with a dissolution model, be used to follow the changes during hydration or, in combination with transport models, to calculate the interactions of cementitious systems with the environment. In all these quite different applications, thermodynamic equilibrium calculations have been a valuable addition to experimental studies deepening our understanding of the processes that govern cementitious systems and interpreting experimental observations. It should be carried in mind that precipitation and dissolution processes can be slow so that thermodynamic equilibrium may not be reached; an approach that couples thermodynamics and kinetics would be preferable. However, as many of the kinetic data are not (yet) available, it is important to verify the results of thermodynamic calculations with appropriate experiments. Thermodynamic equilibrium calculations in its different forms have been applied mainly to Portland cement systems. The approach, however, is equally valid for blended systems or for cementitious systems based on supplementary cementitious materials and is expected to further the development of new cementitious materials and blends.


Thermodynamic modeling Pore solution Cements 



Many thanks to Dmitrii Kulik, who helped me over many years to master GEMS, to Thomas Matschei and Göril Möschner, who worked hard to improve the cement thermodynamic databases and to Urs Berner, Fred Glasser, and Erich Wieland who offered many insights in applications of thermodynamics to cementitious systems. Thanks also to Frank Winnefeld, Ken Snyder, and Pietro Lura, whose comments helped to improve this manuscript.


  1. 1.
    Parkhurst DJ, Appelo CAJ (1999) User’s Guide to PHREEQC (version 2): a computer program for speciation, batch reaction, one dimensional transport, and inverse geochemical calculations, in Water-Resources Investigation Report, Denver, ColoradoGoogle Scholar
  2. 2.
    Westall JC, Zachary JL, Morel FMM (1976) MINEQL. Department of Civil Engineering, MIT, Cambridge, MAGoogle Scholar
  3. 3.
    Wolery TJ (1992) EQ3/6, A software package for geochemical modeling of aqueous systems: package overview and installation guide (version 7). Lawrence Livermore National Laboratory, Livermore, CAGoogle Scholar
  4. 4.
    van der Lee J, De Windt L (2002) CHESS tutorial and cookbook. Updated for version 3.0. Ecole Nationale Supérieure des Mines de Paris, ParisGoogle Scholar
  5. 5.
    Kulik D, Berner U, Curti E (2004) Modelling geochemical equilibrium partitioning with the GEMS-PSI Code. In: Smith B, Gschwend B (eds) PSI Scientific Report 2003/vol IV. Nuclear energy and safety. Paul Scherrer Institute, Villigen, SwitzerlandGoogle Scholar
  6. 6.
    Kulik D (2007) GEMS-PSI 2.2, available at PSI, Villigen, Switzerland
  7. 7.
    Rothstein D, Thomas JJ, Christensen BJ, Jennings HM (2002) Solubility behavior of Ca-, S-, Al-, and Si-bearing solid phases in Portland cement pore solutions as a function of hydration time. Cem Concr Res 32(10):1663–1671Google Scholar
  8. 8.
    Stark J, Möser B, Bellmann F (2007) Quantitative characterization of cement hydration. In: Setzer M (eds) Proceedings of the 5th International Essen Workshop, Transport in Concrete: nano- to macrostructure. Essen, Germany, Aedification Publishers, Freiburg June 11–13, pp 161–179Google Scholar
  9. 9.
    Lothenbach B, Le Saout G, Gallucci E, Scrivener K (2008) Influence of limestone on the hydration of Portland cements. Cem Concr Res 38(6):848–860Google Scholar
  10. 10.
    Lothenbach B, Matschei T, Möschner G, Glasser FP (2008) Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement. Cem Concr Res 38(1):1–18Google Scholar
  11. 11.
    Atkins M, Glasser FP, Moron IP, Jack JJ (1993) Thermodynamic modelling of blended cements at elevated temperature (50–90°C). DOE report DoE/HIMP/RR/94.011Google Scholar
  12. 12.
    Juel I, Herfort D, Gollop R, Konnerup-Madsen J, Jakobsen HJ, Skibsted J (2003) A thermodynamic model for predicting the stability of thaumasite. Cem Conc Comp 25:867–872Google Scholar
  13. 13.
    Matschei T, Lothenbach B, Glasser FP (2007) The role of calcium carbonate in cement hydration. Cem Concr Res 37(4):551–558Google Scholar
  14. 14.
    Nielsen EP, Herfort D, Geiker MR (2005) Phase equilibria of hydrated Portland cement. Cem Concr Res 35:109–115Google Scholar
  15. 15.
    Reardon EJ (1992) Problems and approaches to the prediction of the chemical composition in cement/water systems. Waste Manag 12:221–239Google Scholar
  16. 16.
    Lee JH, Roy DM, Mann B, Stahl D (1995) Integrated approach to modeling long-term durability of concrete engineered barriers in LLRW disposal facility. Mat Res Soc Symp Proc 353:881–889Google Scholar
  17. 17.
    Lothenbach B, Winnefeld F (2006) Thermodynamic modelling of the hydration of Portland cement. Cem Concr Res 36(2):209–226Google Scholar
  18. 18.
    Guillon E, Chen J, Chanvillard G (2008) Physical & chemical modeling of the hydration kinetics of OPC paste using a semi-analytical approach. In: Schlangen E, De Schutter G (eds) Proceedings of the International RILEM symposium on Concrete Modelling: CONMOD’08, 26–28 May 2008. RILEM Publications, Delft, The Netherlands, pp 165–172Google Scholar
  19. 19.
    Samson E, Marchand J, Beaudoin JJ (2000) Modeling the influence of chemical reactions on the mechanisms of ionic transport in porous materials: an overview. Cem Concr Res 30:1895–1902Google Scholar
  20. 20.
    Marchand J, Samson E, Maltais Y, Beaudoin JJ (2002) Theoretical analysis of the effect of weak sodium sulfate solutions on the durability of concrete. Cem Conc Comp 24(3–4):317–329Google Scholar
  21. 21.
    Maltais Y, Samson E, Marchand J (2004) Predicting the durability of Portland cement systems in aggressive environments-laboratory validation. Cem Concr Res 34(9):1579–1589Google Scholar
  22. 22.
    van der Lee J, De Windt L, Lagneau V (2008) Application of reactive transport models in cement-based porous media. In: Schlangen E, De Schutter G (eds) Proceedings of the International RILEM symposium on Concrete Modelling: CONMOD’08, 26–28 May 2008. RILEM Publications, Delft, The Netherlands, pp 463–470Google Scholar
  23. 23.
    Barbarulo R (2008) Modeling chemical degradations of cement pastes in contact with aggressive solutions: leaching and carbonation. In: Schlangen E, De Schutter G (eds) Proceedings of the International RILEM symposium on Concrete Modelling: CONMOD’08, 26–28 May 2008. RILEM Publications, Delft, The Netherlands, pp 213–223Google Scholar
  24. 24.
    Neuville N, Lecolier E, Aouad G, Damidot D (2008) Characterisation and modelling of physico-chemical degradation of cement-based materials used in oil wells. In: Schlangen E, De Schutter G (eds) Proc International RILEM symposium on Concrete Modelling: CONMOD’08, 26–28 May 2008. RILEM Publications, Delft, The Netherlands, pp 191–198Google Scholar
  25. 25.
    Berner UR (1987) Modelling porewater chemistry in hydrated Portland cement. Mat Res Soc Symp Proc 84:319–330Google Scholar
  26. 26.
    Glasser FP (1988) Modelling approach to the prediction of equilibrium phase distribution in slag-cement belnds and their solubility properties. Mat Res Soc Symp Proc 112:3–12Google Scholar
  27. 27.
    Reardon EJ (1990) An ion interaction model for the determination of chemical equilibria in cement/water systems. Cem Concr Res 20:175–192Google Scholar
  28. 28.
    Berner U (1990) A thermodynamic description of the evolution of pore water chemistry and uranium speciation during degradation of cement. PSI, Villigen, SwitzerlandGoogle Scholar
  29. 29.
    Atkins M, Bennett DG, Dawes AC, Glasser FP, Kindness A, Read D (1992) A thermodynamic model for blended cements. Cem Concr Res 22(2–3):497–502Google Scholar
  30. 30.
    Atkins M, Glasser FP, Kindness A (1992) Cement hydrate phases: solubility at 25°C. Cem Concr Res 22:241–246Google Scholar
  31. 31.
    Bennett DG, Read D, Atkins M, Glasser FP (1992) A thermodynamic model for blended cements. II: Cement hydrate phases; thermodynamic values and modelling studies. J Nucl Mater 190:315–325Google Scholar
  32. 32.
    Damidot D, Glasser FP (1992) Thermodynamic investigation of the CaO–Al2O3–CaSO4–H2O system at 50°C and 85°C. Cem Concr Res 22:1179–1192Google Scholar
  33. 33.
    Damidot D, Stronach S, Kindness A, Atkins M, Glasser FP (1994) Thermodynamic investigation of the CaO–Al2O3–CaCO3–H2O closed system at 25° C and the influence of Na2O. Cem Concr Res 24(3):563–572Google Scholar
  34. 34.
    Neall FB (1994) Modelling of the near-field chemistry of the SMA repository at the Wellenberg Site. PSI, Villigen, SwitzerlandGoogle Scholar
  35. 35.
    Damidot D, Glasser FP (1995) Investigation of the CaO–Al2O3–SiO2–H2O system at 25°C by thermodynamic calculations. Cem Concr Res 25(1):22–28Google Scholar
  36. 36.
    Jacques D (2008) Benchmarking of the cement model and detrimental chemical reactions including temperature dependent parameters, SCK–CEN, NIRAS-MP5-03-XXGoogle Scholar
  37. 37.
    Appelo CAJ, Postma D (1996) Geochemistry, groundwater and pollution. A.A. Balkema, RotterdamGoogle Scholar
  38. 38.
    Anderson GM, Crerar DA (1993) Thermodynamics in geochemistry: the equilibrium model. Oxford University Press, OxfordGoogle Scholar
  39. 39.
    Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Environmental Science and Technology. Wiley, New YorkGoogle Scholar
  40. 40.
    Kulik D (2002) Gibbs energy minimization approach to modeling sorption equilibria at the mineral interface: thermodynamic relations for multi-site surface complexation. Am J Sci 302:227–279Google Scholar
  41. 41.
    Nordstrom DK, Munoz JL (1988) Geochemical thermodynamics. Blackwell, BostonGoogle Scholar
  42. 42.
    Perkins RB, Palmer CD (1999) Solubility of ettringite (Ca6[Al(OH)6]2(SO4)3·26H2O) at 5–75°C. Geochim Cosmochim Ac 63(13/14):1969–1980Google Scholar
  43. 43.
    Matschei T, Lothenbach B, Glasser FP (2007) Thermodynamic properties of Portland cement hydrates in the system CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O. Cem Concr Res 37(10):1379–1410Google Scholar
  44. 44.
    Parkhurst DJ (1990) Ion-association models and mean activity coefficients of various salts. In: Melchior DC, Bassett RL (eds) Chemical modeling of aqueous systems II. ACS Symposium series 416. American Chemical Society, Washington, DC, pp 30–43Google Scholar
  45. 45.
    Helgeson HC, Kirkham DH, Flowers GC (1981) Theoretical prediction of the thermodynamic behaviour of aqueous electrolyte at high pressures and temperatures. IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative molal properties to 600°C and 5 kb. Am J Sci 281(10):1249–1516Google Scholar
  46. 46.
    Grenthe I, Puidomenech I (1997) Modelling in aquatic chemistry. OECD Nuclear Chemistry, Paris, FranceGoogle Scholar
  47. 47.
    Pitzer KS (1991) Ion interaction approach: theory and data correlation. In: Pitzer KS (ed) Activity coefficients in electrolyte solutions. CRC Press, Boca Raton, pp 75–153Google Scholar
  48. 48.
    Viallis H, Faucon P, Petit JC, Nonat A (1999) Interactions between salts (NaCl, CsCl) and calcium-silicate hydrates (C-S-H). J Phys Chem B 103(25):5212–5219Google Scholar
  49. 49.
    Viallis-Terrisse H, Nonat A, Petit JC (2001) Zeta-potential study of calcium silicate hydrates interacting with alkaline cations. J Colloid Interface Sci 253(1):140–149Google Scholar
  50. 50.
    Barbarulo R, Peycelon H, Prene S (2003) Experimental study and modelling of sulfate sorption on calcium silicate hydrate. Ann Chim Sci Mater 1(Suppl):S5–S10Google Scholar
  51. 51.
    Wieland E, Tits J, Kunz D, Dähn R (2008) Strontium uptake by cementitious materials. Environ Sci Technol 42(2):403–409Google Scholar
  52. 52.
    Johannesson B, Yamada K, Nilsson L-O, Hosokawa Y (2007) Multi-species ionic diffusion in concrete with account to interaction between ions in the pore solution and the cement hydrates. Mater Struct 40:651–665Google Scholar
  53. 53.
    Hosokawa Y, Yamada K, Johannesson B, Nilsson L-O (2008) A development of a multi-species mass transport model considering thermodynamic phase equilibrium. In: Schlangen E, De Schutter G (eds) Proceedings of the International RILEM symposium on Concrete Modelling: CONMOD’08. PILEM Publications SARL, PRO 58, Delft, The Netherlands, pp 543–550Google Scholar
  54. 54.
    Labbez C, Nonat A, Pochard I, Jönsson B (2007) Experimental and theoretical evidence of overcharging calcium silicate hydrate. J Colloid Interface Sci 309(2):303–307Google Scholar
  55. 55.
    Kulik DA, Kersten M (2001) Aqueous solubility diagrams for cementitious waste stabilization systems: II, End-member stoichiometries of ideal calcium silicates hydrate solid solutions. J Am Ceram Soc 84(12):3017–3026Google Scholar
  56. 56.
    Macphee DE, Barnett SJ (2004) Solution properties of solids in the ettringite-thaumasite solid solution series. Cem Concr Res 34:1591–1598Google Scholar
  57. 57.
    Lothenbach B (2008) Thermodynamic modelling of the effect of temperature on the hydration of Portland cement. In: Schlangen E, De Schutter G (eds) Proceedings of the International RILEM symposium on Concrete Modelling: CONMOD’08, 26–28 May 2008. RILEM Publications, Delft, The Netherlands, pp 393–400Google Scholar
  58. 58.
    Möschner G, Lothenbach B, Ulrich A, Figi R, Kretschmar R (2009) Solid solution between Al-ettringite and Fe-ettringite (Ca6[Al1-xFex(OH)6]2(SO4)3·26H2O). Cem Concr Res 39:482–489Google Scholar
  59. 59.
    Bruno J, Bosbach D, Kulik D, Navrotsky A (2007) Chemical thermodynamics, vol 10. Chemical thermodynamics of solid solutions of interest in nuclear waste management. North-Holland/Elsevier, Amsterdam, The NetherlandsGoogle Scholar
  60. 60.
    Curti E (1999) Coprecipitation of radionuclides with calcite: estimation of partition coefficients based on a review of laboratory investigations and geochemical data. Appl Geochem 14(4):433–445Google Scholar
  61. 61.
    Helgeson HC, Delany JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci 278-A:1–229Google Scholar
  62. 62.
    Babushkin VI, Matveyev GM, Mchedlov-Petrossyan OP (1985) Thermodynamics of silicates. Springer, BerlinGoogle Scholar
  63. 63.
    Johnson JW, Oelkers EH, Helgeson HC (1992) SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C. Comput Geosci 18(7):899–947Google Scholar
  64. 64.
    Robie RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. US Geol Surv Bull 2131:461.Google Scholar
  65. 65.
    Shock EL, Sassani DC, Willis M, Sverjensky DA (1997) Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochim Cosmochim Acta 61(5):907–950Google Scholar
  66. 66.
    Sverjensky DA, Shock EL, Helgeson HC (1997) Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb. Geochim Cosmochim Acta 61(7):1359–1412Google Scholar
  67. 67.
    Hummel W, Berner U, Curti E, Pearson FJ, Thoenen T (2002) Nagra/PSI chemical thermodynamic data base 01/01. Universal Publishers/, USA (also published as Nagra Technical Report NTB 02-16, Wettingen, Switzerland)Google Scholar
  68. 68.
    Babushkin VI, Matveev OP, Mčedlov-Petrosjan OP (1965) Thermodinamika silikatov. Strojisdat, MoskauGoogle Scholar
  69. 69.
    Nikushchenko VM, Khotimchenko VS, Rumyantsev PF, Kalinin AI (1973) Determination of the standard free energies of formation of calcium hydroxyaluminates. Cem Concr Res 3:625–632Google Scholar
  70. 70.
    Barret P, Bertrandie D, Beau D (1983) Calcium hydrocarboaluminate, carbonate, alumina gel and hydrated aluminates solubility diagram calculated in equilibrium with CO2g and with Naaq+ ions. Cem Concr Res 13:789–800Google Scholar
  71. 71.
    Bourbon X (2003) Chemical conceptual model for cement based materials, mineral phases and thermodynamic data, ANDRA Technical Report C.NT.ASCM.03.026.AGoogle Scholar
  72. 72.
    Schmidt T, Lothenbach B, Romer M, Scrivener KL, Rentsch D, Figi R (2008) A thermodynamic and experimental study of the conditions of thaumasite formation. Cem Concr Res 38(3):337–349Google Scholar
  73. 73.
    Möschner G, Lothenbach B, Rose J, Ulrich A, Figi R, Kretschmar R (2008) Solubility of Fe-ettringite (Ca6[Fe(OH)6]2(SO4)3·26H2O). Geochim Cosmochim Acta 72(1):1–18Google Scholar
  74. 74.
    Stade H (1989) On the reaction of C-S-H(di, poly) with alkali hydroxides. Cem Concr Res 19:802–810Google Scholar
  75. 75.
    Hong S-Y, Glasser FP (1999) Alkali binding in cement pastes. Part I. The C-S-H phase. Cem Concr Res 29:1893–1903Google Scholar
  76. 76.
    Hong S-Y, Glasser FP (2002) Alkali sorption by C-S-H and C-A-S-H gels. Part II. Role of alumina. Cem Concr Res 32(7):1101–1111Google Scholar
  77. 77.
    Taylor HFW (1987) A method for predicting alkali ion concentrations in cement pore solutions. Adv Cem Res 1(1):5–17Google Scholar
  78. 78.
    Brouwers HJH, van Eijk RJ (2003) Alkali concentrations of pore solution in hydrating OPC. Cem Concr Res 33:191–196Google Scholar
  79. 79.
    Kulik D, Tits J, Wieland E (2007) Aqueous-solid solution model of strontium uptake in C-S-H phases’. Geochim Cosmochim Acta 71(12, Suppl 1):A530Google Scholar
  80. 80.
    Faucon P, Delagrave A, Petit JC, Richet C, Marchand J, Zanni H (1999) Aluminium incorporation in calcium silicate hydrates (C-S-H) depending on their Ca/Si ratio. J Phys Chem B 103:7796–7802Google Scholar
  81. 81.
    Matschei T, Skapa R, Lothenbach B, Glasser FP (2007) The distribution of sulfate in hydrated Portland cement paste, Proceedings of the 12th ICCC, Montreal, Canada, 9–12 July 2007, pp W1-05.2Google Scholar
  82. 82.
    Schwiete HE, Iwai T (1964) The behaviour of the ferritic phase in cement during hydration. Zement-Kalk-Gips 17:379–386Google Scholar
  83. 83.
    Gollop RS, Taylor HFW (1994) Microstructural and microanalytical studies of sulfate attack. II. Sulfate-resisting Portland cement: ferrite composition and hydration chemistry. Cem Concr Res 24(7):1347–1358Google Scholar
  84. 84.
    Paul M, Glasser FP (2000) Impact of prolonged warm (85 degrees C) moist cure on Portland cement paste. Cem Concr Res 30(12):1869–1877Google Scholar
  85. 85.
    Collier NC, Milestone NB, Hill J, Godfrey IH (2006) The disposal of radioactive ferric floc. Waste Manage 26(7):769–775Google Scholar
  86. 86.
    Taylor HFW (1997) Cement chemistry. Thomas Telford Publishing, LondonGoogle Scholar
  87. 87.
    Johnson CA, Glasser FP (2003) Hydrotalcite-like minerals (M2Al(OH)6(CO3)0.5·xH2O, where M = Mg, Zn, Co, Ni) in the environment: synthesis, characterisation and thermodynamic stability. Clay Clay Miner 51:1–8Google Scholar
  88. 88.
    Allada RK, Navrotsky A, Boerio-Goates J (2005) Thermochemistry of hydrotalcite-like phases in the MgO–-Al2O3–CO2–H2O system: a determination of enthalpy, entropy, and free energy. Am Miner 90(2–3):329–335Google Scholar
  89. 89.
    Garrault S, Finot E, Lesniewska E, Nonat A (2005) Study of C-S-H growth on C3S surface during its early hydration. Mater Struct 38:435–442Google Scholar
  90. 90.
    Garrault S, Nonat A (2001) Hydrated layer formation on tricalcium and dicalcium silicate surfaces: experimental study and numerical simulations. Langmuir 17:8131–8138Google Scholar
  91. 91.
    Bullard JW (2008) A determination of hydration mechanisms for tricalcium silicate using a kinetic cellular automaton model. J Am Ceram Soc 91(7):2088–2097Google Scholar
  92. 92.
    Damidot D, Bellmann F, Möser B, Sovoidnich T (2007) Investigation of the early dissolution behavior of C3S. In: Proceedings of the 12th ICCC, Montreal, Canada, 9–12 July 2007, pp W1-06.5Google Scholar
  93. 93.
    Minard H, Garrault S, Regnaud L, Nonat A (2007) Mechanisms and parameters controlling the tricalcium aluminate reactivity in the presence of gypsum. Cem Concr Res 37:1418–1426Google Scholar
  94. 94.
    Juilland P, Gallucci E, Flatt RJ, Scrivener K (2009) Mechanisms of hydration of cementitious materials at early age. In: Proceedings of the 17th Internationale Baustofftagung (ibausil), 23–26 September 2009, vol 1. Weimar, Germany, pp 1-0201–1-0206Google Scholar
  95. 95.
    Bishnoi S, Scrivener KL (2009) Studying nucleation and growth kinetics of alite hydration using [mu]ic. Cem Concr Res 39(10):849–860Google Scholar
  96. 96.
    Parrot LJ (1986) Modelling the development of microstructure. In: Henniker NH (ed) Proceedings of the Research on the manufacture and use of cements. Engineering Foundation, New York, pp 43–73Google Scholar
  97. 97.
    Wells LS, Clarke WF, McMurdie HF (1943) Study of the system CaO–Al2O3–H2O at temperature of 21 and 90°C. J Res Nat Bur Stand 30:367–409Google Scholar
  98. 98.
    Peppler RB, Wells LS (1954) The system of lime, alumina, and water from 50 to 250°C. J Res Nat Bur Stand 52(2):75–92Google Scholar
  99. 99.
    Jappy TG, Glasser FP (1991) Synthesis and stability of silica-substituted hydrogarnet Ca3Al2Si3-xO12–4x(OH)4x. Adv Cem Res 4:1–8Google Scholar
  100. 100.
    Lothenbach B, Wieland E (2006) A thermodynamic approach to the hydration of sulphate-resisting Portland cement. Waste Manag 26(7):706–719Google Scholar
  101. 101.
    Schott J, Pokrovsky OS, Oelkers EH (2009) The link between mineral dissolution/precipitation kinetics and solution chemistry. In: Oelkers EH, Schott J (eds) Reviews in mineralogy and geochemistry, vol 70. Thermodynamics and kinetics of water-rock interaction. Mineralogical Society of America Geochemical Society, Chantilly, VAGoogle Scholar
  102. 102.
    Brantley SL (2008) Kinetics of mineral dissolution. In: Brantley SL, Kubicki JD, White AF (eds) Kinetics of rock-water interaction. Springer, New YorkGoogle Scholar
  103. 103.
    Chou L, Garrels RM, Wollast R (1989) Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chem Geol 78:269–282Google Scholar
  104. 104.
    Inskeep WP, Bloom PR (1985) An evaluation of rate equations for calcite precipitation kinetics at pCO2 less than 0.01 atm and pH greater than 8. Geochim Cosmochim Ac 49:2165–2180Google Scholar
  105. 105.
    Kontrec J, Kralj D, Brecevic L (2002) Transformation of anhydrous calcium sulphate into calcium sulphate dihydrate in aqueous solutions. J Cryst Growth 240:203–211Google Scholar
  106. 106.
    Zhang J, Nancollas GH (1992) Influence of calcium/sulfate molar ratio on the growth rate of calcium sulfate dihydrate at constant supersaturation. J Cryst Growth 118:287–294Google Scholar
  107. 107.
    Barret P, Bertrandie D (1980) Courbe d’instabilité minimale dans une solution métastable de CA. 7th ICCC 3-V, pp 134–139Google Scholar
  108. 108.
    Fujii K, Kondo W, Ueno H (1986) Kinetics of hydration of monocalcium aluminate. J Am Ceram Soc 69(4):361–364Google Scholar
  109. 109.
    Bertrandie D, Barret P (1986) Hydration elementary interfacial steps of calcium aluminates as cement compounds. In: Proceedings of the 8th International Congress on the Chemistry of Cement, vol 3, Rio de Janeiro, pp 79–85Google Scholar
  110. 110.
    Damidot D (2007) Calculation of critically supersaturated domains with respect to ettringite in the CaO–Al2O3–CaSO4–H2O system at 20°C. In: Proceedings of the 12th ICCC, Montreal, Canada, 9–12 July 2007, pp W1-05.5Google Scholar
  111. 111.
    Gartner EM, Tang FJ, Weiss SJ (1985) Saturation factors for calcium hydroxide and calcium sulfates in fresh Portland cement pastes. J Am Ceram Soc 68(12):667–673Google Scholar
  112. 112.
    Michaux M, Fletcher P, Vidick B (1989) Evolution at early hydration times of the chemical composition of liquid phase of oil-well cement pastes with and without additives. Part I. Additive free cement pastes. Cem Concr Res 19:443–456Google Scholar
  113. 113.
    Goldschmidt A (1982) About the hydration theory and the composition of the liquid phase of Portland cement. Cem Concr Res 12:743–746Google Scholar
  114. 114.
    Locher FW, Richartz W, Sprung S (1976) Erstarren von zement I: reaktion und gefügeentwicklung. Zement-Kalk-Gips 29(10):435–442Google Scholar
  115. 115.
    Vernet C, Démoulian E, Gourdin P, Hawthorn F (1980) Hydration kinetics of Portland cement. 7th ICCC II 219–224Google Scholar
  116. 116.
    Vernet C, Démoulian E, Gourdin P, Hawthorn F (1980) Kinetics of slag cements hydration. 7th ICCC III, pp 128–133Google Scholar
  117. 117.
    Locher FW, Richartz W, Sprung S, Rechenberg W (1983) Erstarren von zement IV: einfluss der lösungszusammensetzung. Zement-Kalk-Gips 36(4):224–231Google Scholar
  118. 118.
    Way SJ, Shayan A (1989) Early hydration of a Portland cement in water and sodium hydroxide solutions: composition of solutions and nature of solid phases. Cem Concr Res 19:759–769Google Scholar
  119. 119.
    Longuet P, Burglen L, Zelwer A (1973) La phase liquide du ciment hydraté. Revue des Matériaux de Construction 676:35–41Google Scholar
  120. 120.
    Barneyback RS, Diamond S (1981) Expression and analysis of pore fluids of hardened cement pastes and mortars. Cem Concr Res 11:279–285Google Scholar
  121. 121.
    Diamond S (1981) Effects of two Danish flyashes on alkali contents or pore solutions of cement-flyash pastes. Cem Concr Res 11:383–394MathSciNetGoogle Scholar
  122. 122.
    Gunkel P (1983) Die Zusammensetzung der flüssigen Phase erstarrender und erhärtender Zemente. Beton-Informationen 23(1):3–8Google Scholar
  123. 123.
    Diamond S, Ong S (1994) Effects of added alkali hydroxides in mix water on long-term SO4 2− concentrations in pore solution. Cem Concr Comp 16(3):219–226Google Scholar
  124. 124.
    Goñi S, Lorenzo MP, Guerrero A, Hernández MS (1996) Calcium hydroxide saturation factors in the pore solution of hydrated Portland cement fly ash pastes. J Am Ceram Soc 79(4):1041–1046Google Scholar
  125. 125.
    Thomas JJ, Rothstein D, Jennings HM, Christensen BJ (2003) Effect of hydration temperature on the solubility behavior of Ca-, S-, Al-, and Si-bearing solid phases in Portland cement pastes. Cem Concr Res 33(12):2037–2047Google Scholar
  126. 126.
    Lothenbach B, Winnefeld F, Alder C, Wieland E, Lunk P (2007) Effect of temperature on the pore solution, microstructure and hydration products of Portland cement pastes. Cem Concr Res 37(4):483–491Google Scholar
  127. 127.
    Schwarz W (1995) Novel cement matrices by accelerated hydration of the ferrite phase in Portland cement via chemical activation: kinetics and cementitious properties. Adv Cem Bas Mat 2:189–200Google Scholar
  128. 128.
    Wieker W, Bade T, Winkler A, Herr R (1991) On the composition of pore solutions squeezed from autoclaved cement pastes. In: Nonat A, Mutin JC (eds) Proceedings of the International RILEM workshop hydration setting Dijon, 3–5 July 1991. E & FN Spon, London, pp 125–135Google Scholar
  129. 129.
    Christensen AN, Jensen TR, Hanson JC (2004) Formation of ettringite, Ca6Al2(SO4)3(OH)12·26H2O, AFt, and monosulfate, Ca4Al2O6(SO4)·14H2O, AFm-14, in hydrothermal hydration of Portland cement and of calcium aluminum oxide–calcium sulfate dihydrate mixtures studied by in situ synchrotron X-ray powder diffraction. J Solid State Chem 177(6):1944–1951Google Scholar
  130. 130.
    Glasser FP, Luke K, Angus MJ (1988) Modification of cement pore fluid compositions by pozzolanic additives. Cem Concr Res 18(2):165–178Google Scholar
  131. 131.
    Lorenzo P, Goñi S, Hernandez S, Guerrero A (1996) Effect of fly ashes with high alkali content on the alkalinity of the pore solution of hydrated Portland cement paste. J Am Ceram Soc 79(2):470–474Google Scholar
  132. 132.
    Shehata MH, Thomas MDA, Bleszynski RF (1999) The effects of fly ash composition on the chemistry of the pore solution in hydrated cement pastes. Cem Concr Res 29(12):1915–1920Google Scholar
  133. 133.
    Shehata MH, Thomas MDA (2002) Use of ternary blends containing silica fume and fly ash to suppress expansion due to alkali-silica reaction in concrete. Cem Concr Res 32(3):341–349Google Scholar
  134. 134.
    Larbi JA, Fraay ALA, Bijen JMJM (1990) The chemistry of the pore fluid of silica fume-blended cement systems. Cem Concr Res 20:506–516Google Scholar
  135. 135.
    Rasheeduzzafar, Hussain ES (1991) Effect of microsilica and blast furnace slag on pore solution composition and alkali-silica reaction. Cem Concr Comp 13:219–225Google Scholar
  136. 136.
    Coleman NJ, Page CL (1997) Aspects of the pore solution chemistry of hydrated cement pastes containing metakaolin. Cem Concr Res 27(1):147–154Google Scholar
  137. 137.
    Tishmack JK, Olek J, Diamond S, Sahu S (2001) Characterization of pore solutions expressed from high-calcium fly-ash-water pastes. Fuel 80:815–819Google Scholar
  138. 138.
    Vernet C (1982) Comportement de l’ion S–au cours de l’hydratation des ciments riche en laitier (CLK). Silicates industriels 47:85–89Google Scholar
  139. 139.
    Matschei T, Bellmann F, Stark J (2005) Hydration behaviour of sulphate-activated slag cements. Adv Cem Res 17(4):167–178Google Scholar
  140. 140.
    Gruskovnjak A, Lothenbach B, Winnefeld F, Figi R, Ko SC, Adler M, Mäder U (2008) Hydration mechanisms of supersulphated slag cement. Cem Concr Res 38:983–992Google Scholar
  141. 141.
    Song SJ, Jennings HM (1999) Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cem Concr Res 29(2):159–170Google Scholar
  142. 142.
    Puertas F, Fernández-Jiménez A, Blanco-Varela MT (2004) Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate. Cem Concr Res 34(1):139–148Google Scholar
  143. 143.
    Gruskovnjak A, Lothenbach B, Holzer L, Figi R, Winnefeld F (2006) Hydration of alkali-activated slag: comparison with ordinary Portland cement. Adv Cem Res 18(3):119–128Google Scholar
  144. 144.
    Lothenbach B, Gruskovnjak A (2007) Hydration of alkali-activated slag: thermodynamic modelling. Adv Cem Res 19(2):81–92Google Scholar
  145. 145.
    Koyanagi K (1932) Hydration of aluminous cement. Concrete 40(8):40–46Google Scholar
  146. 146.
    Winnefeld F, Lothenbach B (2009) Hydration of calcium sulfoaluminate cements: experimental findings and thermodynamic modelling. Cem Concr Res (in press) doi: 10.1016/j.cemconres.2009.08.014
  147. 147.
    Li GS, Walenta G, Gartner E (2007) Formation and hydration of low-CO2 cements based on belite, calcium sulfoaluminate and calcium aluminoferrite. In: Proceedings of the 12th ICCC, Montreal, Canada, 9–12 July 2007, pp TH3-15.3Google Scholar
  148. 148.
    Chatterji S (1991) On the relevance of expressed liquid analysis to the chemical processes occurring in cement paste. Cem Concr Res 21:269–272Google Scholar
  149. 149.
    Duchesne J, Bérubé MA (1994) Evaluation of the validity of the pore solution expression method from hardened cement pastes and mortars. Cem Concr Res 24(3):456–462Google Scholar
  150. 150.
    Tritthart J (1989) Chloride binding in cement—I. Investigations to determine the composition of pore water in hardened cement. Cem Concr Res 19(4):586–594Google Scholar
  151. 151.
    Bérubé MA, Tremblay C (2004) Chemistry of pore solution expressed under high pressure: influence of various parameters and comparison with the hot-water extraction method. In: Proceedings of the 12th International Conference on Alkali-Aggregate Reaction in Concrete, vol I, Beijing, China, October 15–19, pp 833–842Google Scholar
  152. 152.
    Lothenbach B, Winnefeld F, Figi R (2007) The influence of superplasticizers on the hydration of Portland cement. In: Proceedings of the 12th ICCC, Montreal, Canada, 9–12 July 2007, pp W1-5.03Google Scholar
  153. 153.
    Stark J, Möser B, Bellmann F, Rössler C (2006) Thermodynamische Modellierung der Hydratation von OPC. In: Zementhydratation QCD (eds) Proc 16. Internationale Baustofftagung (ibausil), Weimar, Germany, 20–22 September, Tagungsbericht Band 1, pp 1-0047–1-0066Google Scholar
  154. 154.
    Lothenbach B, Schmidt T, Romer M (2007) Influence of limestone additions on sulfate ingression. In: De Belie N (ed) Proc Workshop on performance of cement-based materials in aggressive aqueous environments: characterization, modelling, test methods and engineering aspects, Ghent, Belgium, Online version on PRO 057, E-ISBN: 978-2-35158-059-2, pp 49–56
  155. 155.
    Bullard JW (2007) A three-dimensional microstructural model of reactions and transport in aqueous mineral systems. Model Simul Mater Sci Eng 15:711–738Google Scholar
  156. 156.
    Ma W, Brown PW, Shi D (1992) Solubility of Ca(OH)2 and CaSO4·2H2O in the liquid paste from hardened cement paste. Cem Concr Res 22:531–540Google Scholar
  157. 157.
    Yeboah YD, Saeed MR, Lee AKK (1994) Kinetics of strontium sulfate precipitation from aqueous electrolyte solutions. J Cryst Growth 135:323–330Google Scholar
  158. 158.
    Knowles-Van Cappellen VL, Van Cappellen P, Tiller CL (1997) Probing the charge of reactive sites at the mineral-water interface: effect of ionic strength on crystal growth kinetics of fluorite. Geochim Cosmochim Acta 61(9):1871–1877Google Scholar
  159. 159.
    Kuzel H-J, Pöllmann H (1991) Hydration of C3A in the presence of Ca(OH)2, CaSO4·2H2O and CaCO3. Cem Concr Res 21:885–895Google Scholar
  160. 160.
    Kuzel H, Baier H (1996) Hydration of calcium aluminate cements in the presence of calcium carbonate. Eur J Miner 8:129–141Google Scholar
  161. 161.
    Bonavetti VL, Rahhal VF, Irassar EF (2001) Studies on the carboaluminate formation in limestone filler-blended cements. Cem Concr Res 31:853–859Google Scholar
  162. 162.
    Matschei T, Herfort D, Lothenbach B, Glasser FP (2007) Relationship of cement paste mineralogy to porosity and mechanical properties. In: Proc Conference on Modelling of Heterogeneous Materials, Prague, June 25–27Google Scholar
  163. 163.
    Damidot D, Barnett SJ, Glasser FP, Macphee DE (2004) Investigation of the CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O system at 25°C by thermodynamic calculation. Adv Cem Res 16(2):69–76Google Scholar
  164. 164.
    Bellmann F, Stark J (2007) Prevention of thaumasite formation in concrete exposed to sulphate attack. Cem Concr Res 37(8):1215–1222Google Scholar
  165. 165.
    Bellmann F, Stark J (2008) The role of calcium hydroxide in the formation of thaumasite. Cem Concr Res 38(10):1154–1161Google Scholar
  166. 166.
    Barker AP, Cory HP (1991) The early hydration of limestone-filled cements. In: Swamy RN (ed) Proc blended cements in construction. Elsevier, Sheffield, UK, pp 107–124Google Scholar
  167. 167.
    Ingram K, Polusny M, Daugherty K, Rowe W (1990) Carboaluminate reactions as influenced by limestone additions. In: Klieger P, Hooton RD (eds) Proc Carbonate Additions to Cement, vol 1064. American Society for Testing and Materials (ASTM STP), Philadelphia, PA, pp 14–23Google Scholar
  168. 168.
    Bensted J (1980) Some hydration investigations involving Portland cement-effect of calcium carbonate substitution of gypsum. World Cem Technol 11(8):395–406Google Scholar
  169. 169.
    Matschei T, Lothenbach B, Glasser FP (2007) The AFm phase in Portland cement. Cem Concr Res 37(2):118–130Google Scholar
  170. 170.
    Glasser FP, Marchand J, Samson E (2008) Durability of concrete: degradation phenomena involving detrimental chemical reactions. Cem Concr Res 38(2):226–246Google Scholar
  171. 171.
    Atkins M, Glasser FP, Kindness A (1991) Phase relation and solubility modelling in the CaO–SiO2–Al2O3–MgO–SO3–H2O system: for application to blended cements. Mat Res Soc Symp Proc 212:387–394Google Scholar
  172. 172.
    Gartner E (2004) Industrially interesting approaches to “low-CO2” cements. Cem Concr Res 34:1489–1498Google Scholar
  173. 173.
    Albert B, Guy B, Damidot D (2006) Water chemical potential: a key parameter to determine the thermodynamic stability of some cement phases in concrete? Cem Concr Res 36:783–790Google Scholar

Copyright information

© RILEM 2010

Authors and Affiliations

  1. 1.Empa, Swiss Federal Laboratories for Materials Testing and ResearchLaboratory for Concrete and Construction ChemistryDubendorfSwitzerland

Personalised recommendations