Materials and Structures

, Volume 43, Issue 7, pp 923–932 | Cite as

The effect of incorporation of steatite wastes on the mechanical properties of cementitious composites

  • K. Strecker
  • T. H. Panzera
  • A. L. R. Sabariz
  • J. S. Miranda
Original Article


The recycling of mineral wastes is considered today an activity of utmost importance, contributing in the diversification of products, reduction of final costs, besides promoting alternative raw materials for some industrial sectors. This work focuses on the incorporation of steatite wastes in cementitious composites. A full design of experiment was carried out in order to investigate the effect of the experimental factors: fraction and particle size of steatite and compaction pressures (10 and 30 MPa) on the mechanical properties of the ceramic composites. The increase of the steatite fraction provided an increase of the bulk density and apparent porosity of the composites. Large particles of steatite provided an increase of the apparent porosity decreasing the mechanical strength. The increase of the pressing compaction decreased the apparent porosity, increasing the bulk density and the mechanical strength of the composites.


Waste recycling Cementitious composites Mechanical properties Full design of experiment 



The author would like to thank FAPEMIG for financial support under grant no. CEX 00221/06 and an under graduation scholarship (PIBIC 2008).


  1. 1.
    Khaloo AR (1995) Crushed tile coarse aggregate concrete. Cem Concr Aggreg 17:119–125. doi: 10.1016/0958-9465(94)00004-I Google Scholar
  2. 2.
    Modesto C, Bristot V, Menegali G, Brida M, Mazzuco M, Mazon A, Borba G, Virtuoso J, Gastaldon M, Oliveira AP (2003) Obtenção e caracterização de materiais cerâmicos a partir de resíduos sólidos industriais. Ceram Industr 8:14–18Google Scholar
  3. 3.
    Monce N, Ashjaq K (2001) Cementitious composites containing recycled tire rubber: an overview of engineering properties and potential applications. Cem Concr Aggreg 23:3–10. doi: 10.1016/S0958-9465(00)00051-2 Google Scholar
  4. 4.
    Padmini AK, Ramamurthy K, Mathews MS (2001) Behaviour of concrete with low strength bricks as lightweight coarse aggregate. Mag Concr Res 53:367–375. doi: 10.1680/macr.53.6.367.40798 Google Scholar
  5. 5.
    Binici H (2007) Effect of crushed ceramic and basaltic pumice as fine aggregates on concrete mortars properties. Constr Build Mater 21:1191–1197. doi: 10.1016/j.conbuildmat.2006.06.002 CrossRefGoogle Scholar
  6. 6.
    Sobolev K, Türker P, Soboleva S, Iscioglu G (2007) Utilization of waste glass in ECO-cement: strength properties and microstructural observations. Waste Manag 27:971–976. doi: 10.1016/j.wasman.2006.07.014 CrossRefGoogle Scholar
  7. 7.
    Rim KA, Ledhem A, Douzane O, Dheilly RM, Queneudec M (1999) Influence of the proportion of wood on the thermal and mechanical performances of clay-cement-wood composites. Cem Concr Compos 21:269–276. doi: 10.1016/S0958-9465(99)00008-6 CrossRefGoogle Scholar
  8. 8.
    Pereira FR, Hotza D, Segadaes AM, Labrincha JA (2006) Ceramic formulations prepared with industrial wastes and natural sub-products. Ceram Int 32:173–179. doi: 10.1016/j.ceramint.2005.01.014 CrossRefGoogle Scholar
  9. 9.
    Malhotra SK, Dave NG (1999) Investigations into the effect of addition of flyash and burnt clay pozzolana on certain engineering properties of cement composites. Cem Concr Compos 21:285–291. doi: 10.1016/S0958-9465(99)00006-2 CrossRefGoogle Scholar
  10. 10.
    Senthamarai RM, Manoharan PD (2005) Concrete with ceramic waste aggregate. Cem Concr Compos 27:910–913. doi: 10.1016/j.cemconcomp.2005.04.003 CrossRefGoogle Scholar
  11. 11.
    Menezes RR, Neves GA, Ferreira HC (2002) O estado da arte sobre o uso de resíduos como materias-pimas cerâmicas alternativas. Rev Bras Engenharia Agricola Ambiental 6:303–313Google Scholar
  12. 12.
    Mielcarek W, Wozny DN, Prociow K (2004) Correlation between mgsio3 phases and mechanical durability of steatite ceramics. J Eur Ceram Soc 24:3817–3821. doi: 10.1016/j.jeurceramsoc.2003.12.030 CrossRefGoogle Scholar
  13. 13.
    White JS (1944) Particle-size distribution of steatite talc. J Am Ceram Soc 27:320–323. doi: 10.1111/j.1151-2916.1944.tb14477.x CrossRefGoogle Scholar
  14. 14.
    Associação Brasileira de Normas Técnicas. NBR 11578: Cimento Portland Cimento Portland Composto, Rio de Janeiro, 1991Google Scholar
  15. 15.
    Werkema MCC, Aguiar S (1996) Planejamento e análise de experimentos: como identificar e avaliar as principais variáveis influentes em um processo. Fundação Christiano Ottoni, Escola de Engenharia da UFMG, Belo HorizonteGoogle Scholar
  16. 16.
    Montgomery DC (1997) Introduction to statistical quality control. Wiley, USAMATHGoogle Scholar
  17. 17.
    British Standard (2000) BS EN 12390-2: Testing hardened concrete. Making and curing specimens for strength testsGoogle Scholar
  18. 18.
    Bajza A (1983) Structure of compacted cement pastes. Cem Concr Res 13:239–245. doi: 10.1016/0008-8846(83)90107-2 CrossRefGoogle Scholar

Copyright information

© RILEM 2009

Authors and Affiliations

  • K. Strecker
    • 1
  • T. H. Panzera
    • 1
  • A. L. R. Sabariz
    • 1
  • J. S. Miranda
    • 1
  1. 1.Mechanical Engineering Department (DEMEC)University of São João del-Rei (UFSJ)Sao Joao del-ReiBrazil

Personalised recommendations