Skip to main content
Log in

Early-age stress analysis of a concrete diaphragm wall through tensile creep modeling

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This paper reports a recent large-scale experimental investigation on early-age stress evolution in a deep underground concrete diaphragm wall. To evaluate the early-age stress induced by hydration temperature rise, autogeneous shrinkage and reinforcement restraint, both laboratory tests and in situ large-scale model wall test are performed. The laboratory tests include concrete adiabatic temperature rise, autogeneous shrinkage and restraint test. The in situ model wall simulates continuous and sliding design options for the external and inner layers with thermal and strain sensors installed in the inner layer. The restraint test results are interpreted via tensile creep modeling and an algorithm is conceived to calibrate the concrete tensile creep law. With the identified creep law, a thermomechanical analysis is performed on the model wall to calculate the concrete temperature and stress evolution at early age. The identified tensile creep law is furthermore validated by the numerical results and in situ measurements. Furthermore, the early-age stress analysis is performed on the full-scale diaphragm wall. Comments on the concrete tensile creep law and the diaphragm wall design option are given in the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Springenschmid R (1998) Avoidance of thermal cracking in concrete at early ages. E&FN Spon, London

    Google Scholar 

  2. Comité Euro-International du Béton (1993) CEB-FIP Model Code. Bulletin d’information, No.213/214. Tomas Telford, London, p 473

  3. American Concrete Institute Committee 209 (2005) Prediction of creep, shrinkage and temperature effects in concrete structures. ACI, Farmington Hills

  4. Oluokun F, Burdette E, Deatherage H (1991) Elastic modulus, Poisson’s ratio and compressive strength relationships at early ages. ACI Mater J 88(1):3–10

    Google Scholar 

  5. Ulm FJ, Coussy O (1998) Couplings in early-age concrete: from material modeling to structural design. Int J Solids Struct 35(31–32):4295–4311

    Article  MATH  Google Scholar 

  6. Ulm FJ, Coussy O (2001) What is a “massive” concrete structure at early ages? Some dimensional arguments. ASCE J Eng Mech 127(5):512–522

    Article  Google Scholar 

  7. Bažant ZP (1982) Mathematical models for creep and shrinkage of concrete. In: Bažant ZP, Wittmann FH (eds) Creep and shrinkage in concrete structures. Wiley, New York, pp 163–256

    Google Scholar 

  8. Faria R, Azenha M, Figueiras JA (2006) Modelling of concrete at early ages: application to an externally restrained slab. Cem Concr Compos 28(6):572–585

    Article  Google Scholar 

  9. Kwak HG, Ha SJ, Kim JK (2006) Non-structural cracking in RC walls. Part I. Finite element formulation. Cem Concr Res 36(4):749–760

    Article  Google Scholar 

  10. Yuan Y, Wan ZL (2002) Prediction of cracking within early-age concrete due to thermal, drying and creep behaviour. Cem Concr Res 32(7):1053–1059

    Article  Google Scholar 

  11. Yang W, Weiss WJ, Shah SP (2000) Predicting shrinkage stress field in concrete slab on elastic subgrade. ASCE J Eng Mech 126(1):35–42

    Article  Google Scholar 

  12. Ostergaard L, Lange DA, Altoubat SA, Stang H(2001) Tensile basic creep of early-age concrete under constant load. Cem Concr Res 31(12):1895–1899

    Article  Google Scholar 

  13. Umehara H, Uehara T, Iisaka T, Sugiyama A (1995) Effect of creep in concrete at early ages on thermal stress. In: Shringenschmid R (ed) Thermal cracking in concrete at early ages. E&FN Spon, London, pp 79–86

    Google Scholar 

  14. Morimoto H, Koyanagi W (1995) Estimation of stress relaxation in concrete at early age. In: Shringenschmid R (ed) Thermal cracking in concrete at early ages. E&FN Spon, London

    Google Scholar 

  15. See HT, Attiogbe EK, Miltenberger MA (2003) Shrinkage cracking characteristics of concrete using ring specimens. ACI Mater J 100(3):239–245

    Google Scholar 

  16. Cusson D, Hoogeveen T (2007) An experimental approach for the analysis of early-age behaviour of high-performance concrete structures under restrained shrinkage. Cem Concr Res 37(2):200–209

    Article  Google Scholar 

  17. Zhang T, Qin WZ (2006) Tensile creep due to restraining stresses in high-strength concrete at early ages. Cem Concr Res 36(3):584–591

    Article  MathSciNet  Google Scholar 

  18. Yang EI, Yi ST, Lee HJ (2004) Mechanical characteristics of axially restrained concrete specimens at early ages. ASCE J Mater Civ Eng 16(1):35–44

    Article  Google Scholar 

  19. Springenschmid R, Gierlinger E, Kiernozycki W (1985) Thermal stresses in mass concrete: a new testing method and the influence of different cements. In: Proc 15th ICOLD Congress, Lausanne, 1985, pp 57–72

  20. Bažant ZP, Wu ST (1974) Rate-type creep law of ageing concrete based on Maxwell chain. RILEM Mater Struct 7:45–60

    Google Scholar 

  21. Bissonnette B, Pigeon M, Vaysburd AM (2007) Tensile creep of concrete: study of its sensitivity to basic parameters. ACI Mater J 104(4):360–368

    Google Scholar 

  22. Bažant ZP, Osman E (1976) Double power law for basic creep of concrete. RILEM Mater Struct 9(49):3–11

    Google Scholar 

  23. Bažant ZP (1972) Prediction of concrete creep effects using age-adjusted effective modulus. ACI J 19:212–217

    Google Scholar 

Download references

Acknowledgements

The research is supported by Chengtou Investment Ltd., Tianjin City, China. The constructive discussion with Mr. Fei Li on the early-shrinkage results is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kefei Li.

Appendix: Parameter identification algorithm of tensile creep

Appendix: Parameter identification algorithm of tensile creep

Discretize the time domain from zero tensile instant t 0 to the expected end t end . For our analysis, t 0 = 15.0 h and t end  = 336 h. The time interval is equal to 1.0 h. The parameter identification is summarized as follows:

  1. (a)

    Determine the search ranges and steps for tensile creep parameters,

    $$\left\{\begin{array}{l}\phi_{0}: [\phi_{0}^{min},\phi_{0}^{max}], \Updelta\phi_{0}\\ d:[d_{min},d_{max}], \Updelta d \\p:[p_{min}, p_{max}], \Updelta p \\ \end{array}\right.$$
    (26)
  2. (b)

    Select a parameter group [\(\bar{\phi}_0,\bar{d},\bar{p}\)] from the above search ranges, calculate the incremental creep strain from t 0 to t end through Eq. 16,

    $$ \begin{aligned} \displaystyle{\Updelta_n^{n+1}\epsilon_{cr}}&=\displaystyle {\bar{\phi}_0\sum^{n-1}_{i=0}\bigg\{\frac{\sigma'(t_{i,\frac{1}{2}})}{E(t_{i,\frac{1}{2}})} t_{i,\frac{1}{2}}^{-\bar{d}}\big[(t_{n+1}-t_{i,\frac{1}{2}})^{\bar{p}}-(t_{n}-t_{i,\frac{1}{2}})^{\bar{p}}\big]\Updelta t_i^{i+1}\bigg\}}\\& \displaystyle{+\bar{\phi}_0 \frac{\sigma'(t_{n,\frac{1}{2}})}{E(t_{n,\frac{1}{2}})}t_{n,\frac{1}{2}}^{-\bar{d}}\bigg(\frac{\Updelta t_n^{n+1}}{2}\bigg)^{\bar{p}}}\Updelta t_n^{n+1} \end{aligned} $$
    (27)
  3. (c)

    Calculate the accumulated integral error η in and absolute error η ab for this parameter group,

    $$ \eta_{in}=|\epsilon_{cr}^f-\sum\limits^{t_{end}}_{t_n=t_0}\Updelta_n^{n+1} \epsilon^c_{cr}|/\epsilon_{cr}^f,\eta_{ab} =\hbox{Max} |\Updelta_n^{n+1}\epsilon_{cr}^f-\Updelta_n^{n+1} \epsilon^c_{cr}| $$
    (28)

    with \(\epsilon_{cr}^{f,c}\) signifying respectively the fitted and calculated tensile creeps.

  4. (d)

    Go to (b) until all the parameters groups are calculated. Then find the optimized parameter group by fixing the numerical tolerances for integral and absolute errors \(\bar{\eta}_{in,ab}\),

    $$ \eta_{in} \le \bar{\eta}_{in},\quad \eta_{ab} \le \bar{\eta}_{ab} $$
    (29)
  5. (e)

    If multiple groups are available from the above selection, decrease the tolerances \(\bar{\eta}_{in}, \bar{\eta}_{ab}\) until only one group is left.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, K., Ju, Y., Han, J. et al. Early-age stress analysis of a concrete diaphragm wall through tensile creep modeling. Mater Struct 42, 923–935 (2009). https://doi.org/10.1617/s11527-008-9432-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-008-9432-4

Keywords

Navigation