Advertisement

Materials and Structures

, 42:113 | Cite as

UHPFRC tensile creep at early age

Original Article

Abstract

Ultra high performance fibre reinforced concrete (UHPFRC) early age viscoelastic behaviour under tension was investigated. The tests results showed a high creep potential due to the high volume paste (88%). This result is of major importance because the viscoelastic properties contribute to mitigating the high early age stresses generated under restrained shrinkage. This beneficial effect was reflected by the increased linear-relationship between tensile creep and shrinkage. As expected, UHPFRC tensile creep behaviour was also sensitive to the loading level. Above 35% of the tensile strength at the loading age, the material exhibited viscoplastic behaviour. A Maxwell chain model was applied to predict the early age UHPFRC tensile creep and confirms the induced non-linear response.

Keywords

UHPFRC Early age Numerical model Tensile creep 

Résumé

Le comportement viscoélastique en traction au jeune âge du Béton Fibré Ultra Performant (BFUP) a été étudié. Les résultats d’essais ont montré que le matériau est caractérisé par un potentiel élevé de fluage attribué au grand volume de pâte contenu dans le BFUP (88%). Ces résultats sont d’une importance majeure du fait que les propriétés viscoélastiques contribuent à atténuer les autocontraintes susceptibles de se produire au jeune âge sous certaines conditions d’entrave. Cet effet bénéfique est reflété par la relation linéaire croissante entre le fluage en traction et le retrait. Comme attendu, le comportement viscoélastique du BFUP est sensible aux niveaux de sollicitation. Au-delà de 35% de la résistance à la traction à l’âge de sollicitation, le matériau présente un comportement viscoplastique. Le modèle de Maxwell généralisé a été appliqué pour prédire le fluage en traction au jeune âge, son application confirme la réponse non-linéaire observée.

Notes

Acknowledgements

This project is financially supported by the Swiss National Science Foundation and the Swiss Federal Office for Education and Science within the European project “Sustainable and Advanced Materials for Road Infrastructures” (SAMARIS). The authors want to thank Roland Gysler for his help in performing the tests and Jim birsall for his English corrections.

References

  1. 1.
    Bissonnette B (1996) Le fluage en traction: un aspect important de la problématique des réparations minces en béton. Ph.D. thesis, The University of Laval, Québec, Canada, 290 pp (in French)Google Scholar
  2. 2.
    Igarashi S, Bentur A, Kovler K (2000) Autogenous shrinkage and induced restraining stresses in high-strength concretes. Cem Concr Res 30:1701–1707CrossRefGoogle Scholar
  3. 3.
    Toma G (1999) Comportement des bétons au jeune âge. Ph.D. thesis, The University of Laval, Canada, 262 pp (in French)Google Scholar
  4. 4.
    Charron J-P (2003) Contribution à l’étude du comportement au jeune âge des matériaux cimentaires en conditions des déformations libre et restreinte. Ph.D. thesis, The University of Laval, Québec, Canada, 332 pp (in French)Google Scholar
  5. 5.
    Bosnjak D (2000) Self-induced cracking problems in hardening concrete structures. Doctoral thesis, The University of Trondheim, Norway, 152 ppGoogle Scholar
  6. 6.
    Altoubat SA, Lange DA (2001) Tensile basic creep: measurements and behavior at early age. ACI Mater J 98(5):386–393Google Scholar
  7. 7.
    Altoubat SA, Lange DA (2001) Creep, shrinkage, and cracking of restrained concrete at early age. ACI Mater J 98(4):323–331Google Scholar
  8. 8.
    Paillère AM, Buil M, Serrano JJ (1989) Effect of fiber addition on the autogenous shrinkage of silica fume concrete. ACI Mater J 86:139–144Google Scholar
  9. 9.
    Kovler K, Igarashi SI, Bentur A (1999) Tensile creep behavior of high strength concretes at early ages. Mater Struct 32(219):383–387Google Scholar
  10. 10.
    Habel K (2004) Structural behaviour of elements combining ultra-high performance fibre-reinforced concretes (UHPFRC) and concrete. Doctoral thesis No. 3036, The Ecole Polytechnique Fédérale de Lausanne, Suisse, 195 ppGoogle Scholar
  11. 11.
    Habel K, Charron J-P, Denarié E, Brühwiler E (2006) Autogenous deformations and viscoelasticity of UHPFRC in structures; Part I: experimental results and Part II: numerical modeling. Mag Concr Res 58(3):135–156CrossRefGoogle Scholar
  12. 12.
    Loukili A (1996) Etude du retrait et du fluage de Bétons à Ultra-Hautes Performances. Doctoral thesis, The Ecole Centrale de Nantes, France, 155 pp (in French)Google Scholar
  13. 13.
    Rostasy FS, Gutch A, Laube M (1993) Creep and relaxation of concrete at early ages—experiments and mathematical modelling, in creep and shrinkage of concrete. In: Proceedings of the 5th international RILEM symposium in BarcelonaGoogle Scholar
  14. 14.
    Rossi P, Arca A, Parant E, Fakhri P (2005) Bending and compressive behaviors of new cement composite. Cem Concr Res 33:27–33CrossRefGoogle Scholar
  15. 15.
    Charron J-P, Denarié E, Brühwiler E (2004) Permeability of UHPFRC under high stresses. In: RILEM symposium, advances in concrete through science and engineering, Evanston, USA, March 22–24, CD-ROM, 12 ppGoogle Scholar
  16. 16.
    Brühwiler E, Denarié E, Habel K (2005) Ultra-high performance fibre reinforced concrete for advanced rehabilitation of bridges. In: Balasz GL, Borosnyoi A (eds) Proceedings of fib-symposium, Budapest, May 23–25, pp 951–956Google Scholar
  17. 17.
    Denarié E (2005) Structural rehabilitations with ultra-high performance fibre reinforced concretes (UHPFRC). In: Alexander M, Beushausen H-D, Dehn F, Moyo P (eds) Keynote lecture, ICCRRR 2005: international conference on concrete repair, rehabilitation and retrofitting, Cape Town, South Africa, 21–23 November. Taylor & Francis, London (book with extended summaries and CD-ROM with full papers)Google Scholar
  18. 18.
    Kamen A (2007) Comportement au jeune Age et différé d’un béton écrouissant sous les effets thermomécaniques. Doctoral thesis No. 3827, The Ecole Polytechnique Fédérale de Lausanne, Suisse, 246 pp (in French)Google Scholar
  19. 19.
    Kovler K (1994) Testing system for determining the mechanical behavior of early age concrete under restrained and free uniaxial shrinkage. Mater Struct 27(170):324–330CrossRefGoogle Scholar
  20. 20.
    Bjontegaard O (1999) Thermal dilatation and autogenous deformation as driving forces to self-induced stresses in high performance concrete. Doctoral thesis, The University of Trondheim, Norway, 256 ppGoogle Scholar
  21. 21.
    De Schutter G, Taerwe L (1997) Towards a more fundamental non-linear basic creep model for early age concrete. Mag Concr Res 49(180):195–200Google Scholar
  22. 22.
    Atrushi D (2003) Tensile and compressive creep of early age concrete: testing and modeling. Doctoral thesis, The University of Trondheim, Norway, 314 ppGoogle Scholar
  23. 23.
    Kamen A, Denarié E, Brühwiler E (2007) Mechanical behaviour of ultra high performance fibre reinforced concretes (UHPFRC) at early age, and under restraint. In: Pijaudier-Cabot G, Gérard B, Acker P, Hermès Publishing (eds) Proceedings of CONCREEP 7, Nantes, France, September 12–14, 2005, pp 591–596Google Scholar
  24. 24.
    Kamen A, Denarié E, Brühwiler E (2007) UHPFRC early age time dependent response—experimental characterisation and numerical analysis. In: Proceedings of the third international conference on structural engineering, mechanics and computation, Cape Town, South Africa, 10–12 September 2007, full paper and extended summariesGoogle Scholar
  25. 25.
    Bissonnette B, Boily D, Bastien J, Fafard M (2001) Tensile creep of concrete repair materials: recent experimental findings towards optimization. In: Ulm F-J, Bazant ZP, Wittmann FH (eds) Proceedings of CONCREEP 6, creep, shrinkage and durability mechanics of concrete and other quasi-brittle materials, pp 599–604Google Scholar
  26. 26.
    Gamble BR, Parrott L (1978) Creep of concrete in compression during drying and wetting. Mag Concr Res 30(104):129–138CrossRefGoogle Scholar
  27. 27.
    Neville A, Brooks J (1987) Concrete technology. Longman Scientific and TechnicalGoogle Scholar
  28. 28.
    Bazant ZP, Prasannan S (1989) Solidification theory for concrete creep, part I: formulation, part II: verification and application. J Eng Mech 115:1691–1725CrossRefGoogle Scholar
  29. 29.
    Bazant ZP (1972) Numerical determination of long-range stress history from strain history in concrete. Mater Struct 5:135–141Google Scholar
  30. 30.
    Bazant ZP, Wu ST (1974) Rate type creep law of aging concrete bases on Maxwell chain. Mater Struct 7(37):45–60Google Scholar
  31. 31.
    Huet C (1980) Adaptation d’un algorithme de Bazant au calcul des multilames visco-élastiques vieillissants. Mater Struct 13(74):91–98 (in French)Google Scholar
  32. 32.
    Femmasse (2007) Software (MLS: multi-layer system), developed by Femmasse, on line help http://www.femmasse.nl
  33. 33.
    Bernard O (2000) Comportement à long terme des éléments de structure formés de bétons d’âges différents. Doctoral thesis No. 2283, The Ecole Polytechnique Fédérale de Lausanne, Suisse, 238 pp (in French)Google Scholar
  34. 34.
    Roelfstra PE (1989) A numerical approach to investigate the properties of concrete—numerical concrete. Doctoral thesis No. 788, The Ecole Polytechnique Fédérale de Lausanne, Suisse, 199 ppGoogle Scholar

Copyright information

© RILEM 2008

Authors and Affiliations

  • A. Kamen
    • 1
  • E. Denarié
    • 1
  • H. Sadouki
    • 1
  • E. Brühwiler
    • 1
  1. 1.Laboratory of Maintenance and Safety of Structures (MCS)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations