Materials and Structures

, Volume 41, Issue 3, pp 559–569 | Cite as

Influence of the aggregate quality on the physical properties of natural feebly-hydraulic lime mortars

  • S. Pavía
  • B. Toomey
Original Article


This paper examines the influence of the shape, average size and calcite content of the aggregate on strength, porosity, water absorption, density and capillary suction of natural feebly-hydraulic lime (NHL 2) mortars. Four types of aggregate were analysed in order to determine calcite content, particle shape and average particle size. Four different mortar mixes were then designed and produced using each of the aggregate types and NHL 2 as a binder. The mixing and curing as well as the aggregate:binder proportions were kept constant in order to attribute variation of mortar properties to the quality of the aggregate. The results suggest that an increase in the aggregate’s calcite content lowers the flexural and compressive strength of the mortar. This study also determined that sharp aggregate as well as aggregate with a small average particle size tends to increase the mechanical strength and bulk density of a mortar simultaneously reducing porosity, water absorption and capillary suction. Furthermore, this paper concludes that aggregates containing particles of a wide size range will also increase the mechanical strength and bulk density of the hardened mortar diminishing porosity, water absorption and capillary suction.


Natural feebly-hydraulic lime Aggregate’s shape Size and calcite content Mortar strength Porosity Absorption Density Suction 


Cet article étudie l’influence de la forme, de la taille moyenne, de la proportion en calcite des granulats sur la résistance, la porosité, l’absorption d’eau globale, l’absorption d’eau par capillarité et la densité de mortiers de chaux naturelle faiblement hydraulique (NHL 2). Quatre types de granulats ont été analysés en vue de déterminer leur teneur en calcite ainsi que la forme et la taille moyenne de leurs particules. Quatre mortiers différents ont été ensuite conçus et gâchés en utilisant chaque type de granulats et la chaux NHL 2 comme liant. Le temps de malaxage, les conditions de séchage et la proportion granulats:liant sont restés identiques au cours des différents essais de façon à attribuer à la seule qualité des granulats les différences de propriétés du mortier observées. Les résultats suggèrent qu’une augmentation de la teneur en calcite des granulats diminue la résistance en compression et en flexion du mortier. Cette étude établit aussi que des granulats anguleux, comme des granulats avec une taille moyenne de particule faible, ont tendance à augmenter la résistance mécanique et la masse volumique apparente d’un mortier réduisant simultanément sa porosité, son absorption d’eau globale et son absorption d’eau par capillarité. De plus, cet article conclut que des granulats contenant des particules à granulométrie étalée auront aussi tendance à augmenter la résistance mécanique et la masse volumique apparente du mortier durci diminuant sa porosité, son absorption d’eau globale et son absorption d’eau par capillarité.

Mots clé

Chaux naturelle faiblement hydraulique Forme Taille et teneur en calcite des granulats Résistance du mortier Porosité Absorption Masse volumique Capillarité 



Testing was carried out in the Laboratories of the Department of Civil, Structural and Environmental Engineering, Trinity College Dublin. The authors thank Mr. Chris O’Donovan, Chief Technician, for facilitating our laboratory work; Mr. Martin Carney for his help with testing in the Soils Laboratory; Mr. Eoin Dunne for his assistance with testing in the Materials Laboratory; Mr Patrick Veale for his chemical analyses and Mr. Dave McAuley for his assistance with the equipment. The authors also thank Mr. Nial Leddy of the Centre for Microscopy and Analysis, TCD, for his assisstance with the SEM/EDX analyses; Ms. Luice Chevert for translating the abstract and St Astier Limes, France, and The Traditional Lime Company, Ireland, for donating materials.


  1. 1.
    Martin R (1976) Palladius Traité D’Agriculture. Livre I. Societé D’Edition ‘Les Belles Letres’Google Scholar
  2. 2.
    Eichholz, Pliny the Elder (1962) Natural History. William Heinemann Ltd., Harvard University Press, London, 1962, 2nd edition 1971Google Scholar
  3. 3.
    Hicky Morgan M (1914) Vitruvius: the ten books on architecture. Cambridge: Harvard University PressGoogle Scholar
  4. 4.
    Plommer F (1973) Vitruvius and later Roman building manuals. Cambridge University Press, LondonGoogle Scholar
  5. 5.
    Vicat LJ, A practical and scientific treatise on calcareous Mortars and Cements. John Weale Publ, 1837. Reprinted Donhead 1997Google Scholar
  6. 6.
    Lanas J, Alvarez-Galindo JI (2003) Masonry repair lime based mortars: factors affecting the mechanical behaviour, cem concr res 33(11):1867–1876CrossRefGoogle Scholar
  7. 7.
    Holmes S, Wingate M (1997) Building with lime: a practical introduction. ITDG, LondonGoogle Scholar
  8. 8.
    Cowper AD Lime and Lime Mortars. Department of Scientific and Industrial Research. Building Research Special Report No. 9. His Majesty’s Stationery Office, 1927. Reprinted Shaftesbury, Donhead 1998Google Scholar
  9. 9.
    Lanas J, Perez Bernal JL, Bello MA, Alvarez Galindo JI (2004) Mechanical properties of naturally hydraulic lime based mortars, cem concr res 34:2191–2201CrossRefGoogle Scholar
  10. 10.
    The St Astier Company (2001) citing internet sources, ‘[WWW document]’, accessed 5th November 2005Google Scholar
  11. 11.
    Pavia S, Bolton J (2002) Stone, brick and mortar: historical use, decay and conservation of building materials in Ireland, Wordwell, Co WicklowGoogle Scholar
  12. 12.
    Allen G, Allen J, Elton N, Farey M, Holmes S, Livesey P, Radonjicet M (2003) Hydraulic lime mortar for stone, brick and block masonry, Donhead, ShaftesburyGoogle Scholar
  13. 13.
    Stefanidou M, Papayiannai I (2005) The role of aggregate on the structure and properties of lime mortars, cem concr compos 27Google Scholar
  14. 14.
    BS EN 933-1:1997; 932–2. Tests for geometrical properties of aggregates. Determination of particle size distribution. Sieving methodGoogle Scholar
  15. 15.
    BS EN 459-2:2001 Building lime—Test methodsGoogle Scholar
  16. 16.
    BS EN 196-1:2005 Methods of testing cement—Determination of strengthGoogle Scholar
  17. 17.
    Hanley R (2006) MSc Thesis. Unpublished. Trinity College DublinGoogle Scholar
  18. 18.
    RILEM (1980) Essais recommandés pour mesurer l’alteration des pierres et évaluer l’efficacité des méthodes de traitement. Materiaux et Constructions. Bull Rilem 13(75):216–220Google Scholar
  19. 19.
    UNE 67-027-84. Determinacion de la absorcion de agua. LadrillosGoogle Scholar
  20. 20.
    BS EN 1925:1999 Natural stone test methods. Determination of water absorption coefficient by capillarityGoogle Scholar
  21. 21.
    BS 1199 and 1200:1976 Specifications for building sands from natural sourcesGoogle Scholar
  22. 22.
    Pavía S (2005) Design of quality, durable mortar for the conservation of historic masonry fabrics. In: Dhir RK, Jones MR, Zheng L (eds) Proceedings of the 6th International Congress: repair and renovation of concrete structures. Global construction: ultimate concrete opportunities. Dundee, Scotland, July 2005. Thomas Telford, London, pp 469–476Google Scholar
  23. 23.
    Pavía S, Fitzgerald B, Howard R (2005) Evaluation of properties of magnesian lime mortar. In: Brebbia CA, Torpiano A (eds) Structural studies, repair and maintenance of heritage architecture IX. Malta, June 2005. Vol 83 WIT transactions on the built environment. WIT Press, pp 375–384Google Scholar
  24. 24.
    Pavía S (2006) Lime mortars for masonry repair: Analytical science and laboratory testing versus practical experience. In: Delgado Rodrigues ans J, Mimoso JM (eds) Preceedings of International Seminar Theory and Practice in Conservation- a tribute to Cesare Brandi. May 2006. Laboratorio Nacional de Engenharia Civil, Lisboa, pp 493–500Google Scholar

Copyright information

© RILEM has copyright 2007

Authors and Affiliations

  1. 1.Department of Civil, Structural and Environmental EngineeringTrinity College DublinDublinIreland

Personalised recommendations