Advertisement

Materials and Structures

, Volume 40, Issue 9, pp 877–887 | Cite as

SCC casting prediction for the realization of prototype VHPC-precambered composite beams

  • N. Roussel
  • S. Staquet
  • L. D’Aloia Schwarzentruber
  • R. Le Roy
  • F. Toutlemonde
Original Article

Abstract

Casting simulations of self-compacting concrete are carried out in order to obtain a value of the minimum fluidity needed to cast a VHPC precambered composite beam. The mix proportioning of the concrete takes into account this minimum value. The numerical predictions are finally compared with the experimental observations during two casting tests and the real casting of the two 13 m beams. Although the simplifying assumptions needed to carry out the simulations are numerous, there is an agreement between the predictions and the real casting.

Keywords

Silica Fume Composite Beam Dissipative Particle Dynamic Plastic Viscosity Spread Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Des simulations de mise en oeuvre de bétons auto-plaçant ont été réalisées dans le but d’obtenir la maniabilité minimum permettant de garantir la mise en oeuvre d’une poutre composite préfléchie en BHP. La formulation du béton a été faite en prenant en compte le résultat du calcul. Les prédictions numériques ont alors été comparées aux observations expérimentales obtenues lors du coulage de deux éléments témoins te des deux poutres de 13 mètres. Malgré les nombreuses hypothèses simplificatrices nécessaires pour mener le calcul jusqu’à son terme, il y a un bon accord entre simulations et mise en oeuvre réelle.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are pleased to thank number of colleagues at LCPC who participated to this study: L. Vincent, J.-D. Simitambe, J. Carriat and F. Guirado, who realized the different batches; and S. Dubroca, L. Lauvin, M. Estivin, J. Billo and F.-X. Barin, who prepared and took in charge the beams casting. The support of the National Project ‹MIKTI’ (Ministry for Public Works—Civil Engineering R&D funds) is also gratefully acknowledged.

References

  1. 1.
    Baes L, Lipski A (1957) La poutre Preflex, la décompression du béton enrobant l’aile tendue, le problème du retrait et du fluage. Revue C (Gent) I-4:29–49 (in French)Google Scholar
  2. 2.
    Staquet S, Rigot G, Detandt H, Espion B (2004) Innovative composite precast precambered U-shaped concrete deck for Belgium’s high speed railway trains. PCI J 49(6):94–113Google Scholar
  3. 3.
    Le Roy R (1996) Déformations intantanées et différées des bétons à hautes performances. Etudes et Recherches des LPC, OA 22, LCPC, Paris, pp 378Google Scholar
  4. 4.
    Mannini C (2001) Etudes des effets différés dans les poutres Preflex. mémoire de projet de fin d’études, ENPC, Paris, pp 157Google Scholar
  5. 5.
    Staquet S, Espion B (2005) Deviations from the principle of superposition and their consequences on structural behavior. Shrinkage and Creep of Concrete, ACI SP-227, pp 67–83Google Scholar
  6. 6.
    Coussot P, Ancey C (1999) Rhéophysique des pâtes et des suspensions. EDP Sciences (in French)Google Scholar
  7. 7.
    Petersson O (2003) Simulation of Self-Compacting Concrete—Laboratory experiments and numerical modelling of testing method, J-ring and L-Box test. Proceedings of the 3rd international RILEM Symposium on Self-Compacting Concrete, RILEM PRO33 Reykjavik, Iceland, pp 202–207Google Scholar
  8. 8.
    Martys NS (2005) Study of a dissipative particle dynamics based approach for modeling suspensions. J␣Rheol 49(2):401–424CrossRefGoogle Scholar
  9. 9.
    Tanigawa Y, Mori H (1989) Analytical study on deformation of fresh concrete. J Eng Mech 115(3):493–508CrossRefGoogle Scholar
  10. 10.
    Hu C (1995) “Rheologie des bétons fluides” (rheology of fluid concretes), thèse de doctorat de l’ENPC (PhD Thesis) France (In French)Google Scholar
  11. 11.
    Roussel N, Coussot P (2005) “Fifty-cent rheometer” for yield stress measurements : from slump to spreading flow. J Rheol 49(3):705–718CrossRefGoogle Scholar
  12. 12.
    Roussel N (2006) Correlation between yield stress and slump: comparison between numerical simulations and concrete rheometers results. RILEM Mater Struct 37(4):469–477Google Scholar
  13. 13.
    Flow3D version 8.1, User’s manual, volume 1, 2004Google Scholar
  14. 14.
    Pashias N, Boger DV, Summers J, Glenister DJ (1996) A fifty cent rheometer for yield stress measurements. J␣Rheol 40(6):1179–1189CrossRefGoogle Scholar
  15. 15.
    Roussel N, Stefani C, Le Roy R (2005) From mini cone test to Abrams cone test: measurement of cement based materials yield stress using slump tests. Cem Concr Res 35:817–828CrossRefGoogle Scholar
  16. 16.
    de Larrard F, Sedran T, Kaplan D, Vachon M (2003) Forecasting pumping parameters. Proceedings of the second International Symposium on Self-Compacting Concrete, Tokyo, Japon, 23–25 October, pp 575–584Google Scholar
  17. 17.
    Roussel N (2005) Steady and transient flow behaviour of fresh cement pastes. Cem Concr Res 35:1656–1664CrossRefGoogle Scholar
  18. 18.
    Jarny S, Roussel N, Rodts S, Bertrand F, Le Roy R, Coussot P (2005) Rheological behavior of cement pastes. From MRI to velocimetry. Cem Concr Res 35:1873–1881CrossRefGoogle Scholar
  19. 19.
    de Larrard F, Sedran T (1999) Une nouvelle approche de la formulation des bétons. Annales du BTP 6:39–54 (In French)Google Scholar
  20. 20.
    Ferraris CF, Brower LE (eds) (2004) Comparison of concrete rheometers: International tests at MB (Cleveland OH, USA) in May, 2003. National Institute of Standards and Technology Internal Report 7154Google Scholar
  21. 21.
    Ferraris CF, Brower LE (eds) (2001) Comparison of concrete rheometers: International tests at LCPC (Nantes, France) in October, 2000. National Institute of Standards and Technology Internal Report 6819Google Scholar
  22. 22.
    Roussel N (2005) The LCPC BOX: a cheap and simple technique for yield stress measurements of SCC. RILEM Materials and Structures, accepted for publicationGoogle Scholar

Copyright information

© RILEM has copyright 2007

Authors and Affiliations

  • N. Roussel
    • 1
  • S. Staquet
    • 1
  • L. D’Aloia Schwarzentruber
    • 1
  • R. Le Roy
    • 1
  • F. Toutlemonde
    • 1
  1. 1.LCPCParis Cedex 15France

Personalised recommendations