Skip to main content
Log in

The response of masonry joints to dynamic tensile loading

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This paper presents results from laboratory tests on masonry joints subject to dynamic tensile loading. The tests were carried out using␣specially designed Split Hopkinson Pressure Bar apparatus, the development of which is also␣briefly described in the paper. It was found experimentally that there was a significant apparent dynamic enhancement in the tensile strength when specimens were loaded at strain rates of approximately 1 s−1. (Dynamic Increase Factor = 3.1). Finite element modelling has been used to support a conjecture that this effect may␣at least partly be a result of the inherent spatial variability of the brick–mortar bond strength, rather than being a genuine material characteristic per se.

Resumé

Cet article présente les résultats de tests en laboratoire de joints de maçonnerie soumis à des charges dynamiques en traction. Les tests ont été réalisés en utilisant des équipements “Split Hopkinson Pressure Bar” qui ont été spécifiquement conçus pour ces tests et dont la mise au point est aussi brièvement décrite dans cet article.

Les résultats expérimentaux ont montré qu’il y avait une amélioration dynamique de la résistance à la traction quand les échantillons étaient soumis à des tensions de l’ordre de 1 par seconde. (Facteur d’Accroissement Dynamique = 3.1). Une modélisation utilisant les éléments finis a été utilisée pour confirmer l’hypothèse que ce phénomène est en partie du à la variabilité spatiale propre de la liaison brique-mortier, plutôt qu’à une véritable caractéristique du matériau lui-même.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rots JG (1997) Structural masonry: an experimental/numerical basis for practical design rules. AA Balkema, Rotterdam, ISBN 90 5410 680 8

  2. van der Pluijm R (1997) Non-linear behaviour of masonry under tension. Heron 42:25–54

    Google Scholar 

  3. Gilbert M, Hobbs B, Molyneaux TCK (2002) The performance of unreinforced masonry walls subjected to low-velocity impacts: experiments. Int J Impact Eng 27:231–251

    Article  Google Scholar 

  4. Malvar LJ, Ross CA (1998) Review of strain rate effects for concrete in tension. ACI Mater J Nov–Dec 735–739

  5. Hopkinson B (1914) A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Phil Trans R Soc Lond A 213:437–456

    Google Scholar 

  6. Davies RM (1948) A critical study of the Hopkinson Pressure Bar. Phil Trans R Soc Lond A 240:375–457

    MATH  Google Scholar 

  7. Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc Lond B 62:676–700

    Article  Google Scholar 

  8. Zeilinski AJ, Reinhardt HW (1982) stress–strain behaviour of concrete and mortar at high rates of tensile loading. Cement Concrete Res 12:309–319

    Article  Google Scholar 

  9. Zhou H, Gary G (1997) A new method for the separation of waves. Application to the SHPB technique for an unlimited duration of measurement. J Mech Phys Solids 45:1185–1202

    Article  Google Scholar 

  10. Syrmakezis CA, Asteris PG (2001) Masonry failure criterion under biaxial stress state. J Mater Civil Eng Jan–Feb 58–64

  11. Davies EDH, Hunter SC (1963) The dynamic compression testing of solids by the method of the split Hopkinson pressure bar. J Mech Phys Solids 11:155–79

    Article  Google Scholar 

  12. Gorham DA (1989) Specimen inertia in high strain rate compression. J de Physique D: Appl Phys 22:1888–1893

    Article  Google Scholar 

  13. Gorham DA (1991) The effect of specimen dimensions on high strain rate compression measurements of copper. J de Physique D: Appl Phys 24:1489–1492

    Article  Google Scholar 

  14. Dioh NN, Ivankovic A, Leevers PS, Williams JG (1995) Stress wave propagation effects in the split Hopkinson pressure bar tests. Proc Roy Soc Lond A 449:187–204

    Article  MATH  Google Scholar 

  15. Ross AC, Tedesco JW, Kuennen ST (1995) Effects of strain rate on concrete strength. ACI Mater J Jan–Feb 37–47

  16. Albertini C, Montagnani M (1994) Study of the true stress–strain diagram of plain concrete with real size aggregate; need for and design of a large Hopkinson bar bundle. J de Physique IV Colloque C8:113–118

    Google Scholar 

  17. Tyas A, Watson AJ (2001) An investigation of frequency domain dispersion correction of pressure bar signals. Int J Impact Eng 25:87–101

    Article  Google Scholar 

  18. Gilbert M, Molyneaux TCK, Hobbs B (1998) A dynamic finite element modelling approach for masonry structures. Proc Br Masonry Soc 8:182–187

    Google Scholar 

  19. Hallquist JO (1998) LS-DYNA user manual. Livermore Software Technology Corporation

Download references

Acknowledgements

The authors would like to acknowledge the support of the technical staff at the University of Sheffield. Also acknowledged is the support of EPSRC, under grant references GR/M43128, GR/M43135 and GR/M43142.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gilbert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burnett, S., Gilbert, M., Molyneaux, T. et al. The response of masonry joints to dynamic tensile loading. Mater Struct 40, 517–527 (2007). https://doi.org/10.1617/s11527-006-9160-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-006-9160-6

Keywords

Navigation