Advertisement

Materials and Structures

, Volume 40, Issue 5, pp 517–527 | Cite as

The response of masonry joints to dynamic tensile loading

  • S. Burnett
  • M. Gilbert
  • T. Molyneaux
  • A. Tyas
  • B. Hobbs
  • G. Beattie
Original Article

Abstract

This paper presents results from laboratory tests on masonry joints subject to dynamic tensile loading. The tests were carried out using␣specially designed Split Hopkinson Pressure Bar apparatus, the development of which is also␣briefly described in the paper. It was found experimentally that there was a significant apparent dynamic enhancement in the tensile strength when specimens were loaded at strain rates of approximately 1 s−1. (Dynamic Increase Factor = 3.1). Finite element modelling has been used to support a conjecture that this effect may␣at least partly be a result of the inherent spatial variability of the brick–mortar bond strength, rather than being a genuine material characteristic per se.

Keywords

Masonry Dynamic tests Tensile tests Bond strength Hopkinson bar Finite element modeling 

Resumé

Cet article présente les résultats de tests en laboratoire de joints de maçonnerie soumis à des charges dynamiques en traction. Les tests ont été réalisés en utilisant des équipements “Split Hopkinson Pressure Bar” qui ont été spécifiquement conçus pour ces tests et dont la mise au point est aussi brièvement décrite dans cet article.

Les résultats expérimentaux ont montré qu’il y avait une amélioration dynamique de la résistance à la traction quand les échantillons étaient soumis à des tensions de l’ordre de 1 par seconde. (Facteur d’Accroissement Dynamique = 3.1). Une modélisation utilisant les éléments finis a été utilisée pour confirmer l’hypothèse que ce phénomène est en partie du à la variabilité spatiale propre de la liaison brique-mortier, plutôt qu’à une véritable caractéristique du matériau lui-même.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to acknowledge the support of the technical staff at the University of Sheffield. Also acknowledged is the support of EPSRC, under grant references GR/M43128, GR/M43135 and GR/M43142.

References

  1. 1.
    Rots JG (1997) Structural masonry: an experimental/numerical basis for practical design rules. AA Balkema, Rotterdam, ISBN 90 5410 680 8Google Scholar
  2. 2.
    van der Pluijm R (1997) Non-linear behaviour of masonry under tension. Heron 42:25–54Google Scholar
  3. 3.
    Gilbert M, Hobbs B, Molyneaux TCK (2002) The performance of unreinforced masonry walls subjected to low-velocity impacts: experiments. Int J Impact Eng 27:231–251CrossRefGoogle Scholar
  4. 4.
    Malvar LJ, Ross CA (1998) Review of strain rate effects for concrete in tension. ACI Mater J Nov–Dec 735–739Google Scholar
  5. 5.
    Hopkinson B (1914) A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Phil Trans R Soc Lond A 213:437–456Google Scholar
  6. 6.
    Davies RM (1948) A critical study of the Hopkinson Pressure Bar. Phil Trans R Soc Lond A 240:375–457MATHGoogle Scholar
  7. 7.
    Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc Lond B 62:676–700CrossRefGoogle Scholar
  8. 8.
    Zeilinski AJ, Reinhardt HW (1982) stress–strain behaviour of concrete and mortar at high rates of tensile loading. Cement Concrete Res 12:309–319CrossRefGoogle Scholar
  9. 9.
    Zhou H, Gary G (1997) A new method for the separation of waves. Application to the SHPB technique for an unlimited duration of measurement. J Mech Phys Solids 45:1185–1202CrossRefGoogle Scholar
  10. 10.
    Syrmakezis CA, Asteris PG (2001) Masonry failure criterion under biaxial stress state. J Mater Civil Eng Jan–Feb 58–64Google Scholar
  11. 11.
    Davies EDH, Hunter SC (1963) The dynamic compression testing of solids by the method of the split Hopkinson pressure bar. J Mech Phys Solids 11:155–79CrossRefGoogle Scholar
  12. 12.
    Gorham DA (1989) Specimen inertia in high strain rate compression. J de Physique D: Appl Phys 22:1888–1893CrossRefGoogle Scholar
  13. 13.
    Gorham DA (1991) The effect of specimen dimensions on high strain rate compression measurements of copper. J de Physique D: Appl Phys 24:1489–1492CrossRefGoogle Scholar
  14. 14.
    Dioh NN, Ivankovic A, Leevers PS, Williams JG (1995) Stress wave propagation effects in the split Hopkinson pressure bar tests. Proc Roy Soc Lond A 449:187–204MATHCrossRefGoogle Scholar
  15. 15.
    Ross AC, Tedesco JW, Kuennen ST (1995) Effects of strain rate on concrete strength. ACI Mater J Jan–Feb 37–47Google Scholar
  16. 16.
    Albertini C, Montagnani M (1994) Study of the true stress–strain diagram of plain concrete with real size aggregate; need for and design of a large Hopkinson bar bundle. J de Physique IV Colloque C8:113–118Google Scholar
  17. 17.
    Tyas A, Watson AJ (2001) An investigation of frequency domain dispersion correction of pressure bar signals. Int J Impact Eng 25:87–101CrossRefGoogle Scholar
  18. 18.
    Gilbert M, Molyneaux TCK, Hobbs B (1998) A dynamic finite element modelling approach for masonry structures. Proc Br Masonry Soc 8:182–187Google Scholar
  19. 19.
    Hallquist JO (1998) LS-DYNA user manual. Livermore Software Technology CorporationGoogle Scholar

Copyright information

© RILEM 2006

Authors and Affiliations

  • S. Burnett
    • 1
  • M. Gilbert
    • 1
  • T. Molyneaux
    • 2
  • A. Tyas
    • 1
  • B. Hobbs
    • 3
  • G. Beattie
    • 4
  1. 1.Department of Civil and Structural EngineeringUniversity of SheffieldSheffieldUK
  2. 2.School of Civil and Chemical EngineeringRMITMelbourneAustralia
  3. 3.School of Science & TechnologyUniversity of TeessideMiddlesboroughUK
  4. 4.ArupLiverpool,UK

Personalised recommendations